1887

Abstract

The Chinese rufous horseshoe bat () has been suggested to carry the direct ancestor of severe acute respiratory syndrome (SARS) coronavirus (SCoV), and the diversity of SARS-like CoVs (SLCoV) within this species is therefore worth investigating. Here, we demonstrate the remarkable diversity of SLCoVs in and identify a strain with the same pattern of phylogenetic incongruence (i.e. an indication of recombination) as reported previously in another SLCoV strain. Moreover, this strain possesses a distinctive 579 nt deletion in the region that was also found in a human SCoV from the late-phase epidemic. Phylogenetic analysis of the region suggested that the human SCoVs are phylogenetically closer to SLCoVs in than to SLCoVs in other species. These findings reveal a closer evolutionary linkage between SCoV in humans and SLCoVs in , defining the scope of surveillance to search for the direct ancestor of human SCoVs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.016378-0
2010-04-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/4/1058.html?itemId=/content/journal/jgv/10.1099/vir.0.016378-0&mimeType=html&fmt=ahah

References

  1. Cui, J., Han, N., Streicker, D., Li, G., Tang, X., Shi, Z., Hu, Z., Zhao, G., Fontanet, A. & other authors ( 2007; ). Evolutionary relationships between bat coronaviruses and their hosts. Emerg Infect Dis 13, 1526–1532.[CrossRef]
    [Google Scholar]
  2. Drummond, A. J. & Rambaut, A. ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214 [CrossRef]
    [Google Scholar]
  3. Drummond, A. J., Nicholls, G. K., Rodrigo, A. G. & Solomon, W. ( 2002; ). Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161, 1307–1320.
    [Google Scholar]
  4. Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. ( 2006; ). Relaxed phylogenetics and dating with confidence. PLoS Biol 4, e88 [CrossRef]
    [Google Scholar]
  5. Guan, Y., Zheng, B. J., He, Y. Q., Liu, X. L., Zhuang, Z. X., Cheung, C. L., Luo, S. W., Li, P. H., Zhang, L. J. & other authors ( 2003; ). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278.[CrossRef]
    [Google Scholar]
  6. Holmes, E. C., Worobey, M. & Rambaut, A. ( 1999; ). Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol 16, 405–409.[CrossRef]
    [Google Scholar]
  7. Hon, C. C., Lam, T. Y., Shi, Z. L., Drummond, A. J., Yip, C. W., Zeng, F., Lam, P. Y. & Leung, F. C. ( 2008; ). Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. J Virol 82, 1819–1826.[CrossRef]
    [Google Scholar]
  8. Kan, B., Wang, M., Jing, H., Xu, H., Jiang, X., Yan, M., Liang, W., Zheng, H., Wan, K. & other authors ( 2005; ). Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J Virol 79, 11892–11900.[CrossRef]
    [Google Scholar]
  9. Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H. & Frost, S. D. ( 2006; ). gard: a genetic algorithm for recombination detection. Bioinformatics 22, 3096–3098.[CrossRef]
    [Google Scholar]
  10. Lau, S. K., Woo, P. C., Li, K. S., Huang, Y., Tsoi, H. W., Wong, B. H., Wong, S. S., Leung, S. Y., Chan, K. H. & Yuen, K. Y. ( 2005; ). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102, 14040–14045.[CrossRef]
    [Google Scholar]
  11. Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., Wang, H., Crameri, G., Hu, Z. & other authors ( 2005; ). Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679.[CrossRef]
    [Google Scholar]
  12. Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., Ingersoll, R., Sheppard, H. W. & Ray, S. C. ( 1999; ). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73, 152–160.
    [Google Scholar]
  13. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  14. Ren, W., Li, W., Yu, M., Hao, P., Zhang, Y., Zhou, P., Zhang, S., Zhao, G., Zhong, Y. & other authors ( 2006; ). Full-length genome sequences of two SARS-like coronaviruses in horseshoe bats and genetic variation analysis. J Gen Virol 87, 3355–3359.[CrossRef]
    [Google Scholar]
  15. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  16. Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K. & other authors ( 2003; ). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.016378-0
Loading
/content/journal/jgv/10.1099/vir.0.016378-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error