Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication, but play an important role in modulation of the host immune response Free

Abstract

Non-structural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) is the largest protein of this virus. In addition to its crucial role in virus replication, recent studies have indicated its involvement in modulating host immunity. In this study, each of the six identified immunodominant nsp2 B-cell epitopes (ES2–ES7) was deleted using a type I PRRSV cDNA infectious clone. Deletion of ES3, ES4 or ES7 allowed the generation of viable virus. In comparison with the parental virus, the ΔES3 mutant showed increased cytolytic activity and more vigorous growth kinetics, whilst the ΔES4 and ΔES7 mutants displayed decreased cytolytic activity and slower growth kinetics in MARC-145 cells. These nsp2 mutants were characterized further in a nursery pig disease model. The results showed that the ΔES4 and ΔES7 mutants exhibited attenuated phenotypes, whereas the ΔES3 mutant produced a higher peak viral load in pigs. The antibody response reached similar levels, as measured by IDEXX ELISA at 21 days post-infection, and slightly higher levels of mean virus neutralizing titres were observed from pigs infected by the ΔES4 and ΔES7 mutants. The expression of innate and T-helper 1 cytokines was measured in peripheral blood mononuclear cells or virus-infected macrophages. The results consistently showed that interleukin-1 and tumour necrosis factor alpha expression levels were downregulated in cells that were stimulated (or infected) with the ΔES3 mutant compared with parental virus and the other nsp2 deletion mutants. These results suggest that certain regions in nsp2 are non-essential for PRRSV replication but may play an important role in modulation of host immunity .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.016212-0
2010-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/4/1047.html?itemId=/content/journal/jgv/10.1099/vir.0.016212-0&mimeType=html&fmt=ahah

References

  1. Allende, R., Lewis, T. L., Lu, Z., Rock, D. L., Kutish, G. F., Ali, A., Doster, A. R. & Osorio, F. A.(1999). North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J Gen Virol 80, 307–315. [Google Scholar]
  2. Brown, E., Lawson, S., Welbon, C., Murtaugh, M. P., Nelson, E. A., Zimmerman, J. J., Rowland, R. R. R. & Fang, Y.(2009). Antibody response to porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural proteins and implications for diagnostic detection and differentiation of PRRSV types I and II. Clin Vaccine Immunol 16, 628–635.[CrossRef] [Google Scholar]
  3. Dawson, H. D., Beshah, E., Nishii, S., Solano-Aguilar, G., Morimoto, M., Zhao, A., Madden, K. B., Ledbetter, T. K., Dubey, J. P. & other authors(2005). Localized multi-gene expression patterns support an evolving Th1/Th2-like paradigm in response to infections with Toxoplasma gondii and Ascaris suum in pigs. Infect Immun 73, 1116–1128.[CrossRef] [Google Scholar]
  4. de Lima, M., Pattnaik, A. K., Flores, E. F. & Osorio, F. A.(2006). Mapping of B-cell linear epitopes on Nsp2 and structural proteins of a North American strain of porcine reproductive and respiratory syndrome virus. Virology 353, 410–421.[CrossRef] [Google Scholar]
  5. den Boon, J. A., Faaberg, K. S., Meulenberg, J. J. M., Wassenaar, A. L. M., Plagemann, P. G. W., Gorbelenya, A. E. & Snijder, E. J.(1995). Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein: identification of two papainlike cysteine proteases. J Virol 69, 4500–4505. [Google Scholar]
  6. Falk, K., Rötzschke, O., Stevanović, S., Jung, G. & Rammensee, H. G.(1991). Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296.[CrossRef] [Google Scholar]
  7. Fang, Y., Kim, D. Y., Ropp, S., Steen, P., Christopher-Hennings, J., Nelson, E. A. & Rowland, R. R. R.(2004). Heterogeneity in Nsp2 of European-like porcine reproductive and respiratory syndrome viruses isolated in the United States. Virus Res 100, 229–235.[CrossRef] [Google Scholar]
  8. Fang, Y., Rowland, R. R. R., Roof, M., Lunney, J. K., Christopher-Hennings, J. & Nelson, E. A.(2006). A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus: expression of green fluorescent protein in the nsp2 region. J Virol 80, 11447–11455.[CrossRef] [Google Scholar]
  9. Fang, Y., Schneider, P., Zhang, W. P., Faaberg, K., Nelson, E. A. & Rowland, R. R. R.(2007). Diversity and evolution of a newly emerged North American Type 1 porcine arterivirus. Arch Virol 152, 1009–1017.[CrossRef] [Google Scholar]
  10. Fang, Y., Christopher-Hennings, J., Brown, E., Liu, H., Chen, Z., Lawson, S., Breen, R., Clement, T., Gao, X. & other authors(2008). Development of genetic markers in the nonstructural protein 2 region of a US type 1 porcine reproductive and respiratory syndrome virus: implications for future recombinant marker vaccine development. J Gen Virol 89, 3086–3096.[CrossRef] [Google Scholar]
  11. Frias-Staheli, N., Glannakopoulos, N. V., Kikkert, M., Taylor, S. L., Bridgen, A., Paragas, J., Richt, J. A., Rowland, R. R. R., Schmaljohn, C. S. & other authors(2007). Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2, 404–416.[CrossRef] [Google Scholar]
  12. Gao, Z. Q., Guo, X. & Yang, H. C.(2004). Genomic characterization of two Chinese isolates of porcine respiratory and reproductive syndrome virus. Arch Virol 149, 1341–1351. [Google Scholar]
  13. Han, J., Wang, Y. & Faaberg, K. S.(2006). Complete genome analysis of RFLP184 isolates of porcine reproductive and respiratory syndrome virus. Virus Res 122, 175–182.[CrossRef] [Google Scholar]
  14. Han, J., Liu, G., Wang, Y. & Faaberg, K. S.(2007). Identification of nonessential regions of the nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture. J Virol 81, 9878–9890.[CrossRef] [Google Scholar]
  15. Han, J., Rutherford, M. S. & Faaberg, K. S.(2009). The porcine reproductive and respiratory syndrome virus nsp2 cysteine protease domain possesses both trans- and cis-cleavage activities. J Virol 83, 9449–9463.[CrossRef] [Google Scholar]
  16. Hayashi, N., Welschof, M., Zewe, M., Braunagel, M., Dübel, S., Breitling, F. & Little, M.(1994). Simultaneous mutagenesis of antibody CDR regions by overlap extension and PCR. Biotechniques 17, 310–315. [Google Scholar]
  17. Hopp, T. P. & Woods, K. R.(1981). Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A 78, 3824–3828.[CrossRef] [Google Scholar]
  18. Hu, H., Li, X., Zhang, Z., Shuai, J., Chen, N., Liu, G. & Fang, W.(2009). Porcine reproductive and respiratory syndrome viruses predominant in southeastern China from 2004 to 2007 were from a common source and underwent further divergence. Arch Virol 154, 391–398.[CrossRef] [Google Scholar]
  19. Johnson, C. R., Yu, W. & Murtaugh, M. P.(2007). Cross-reactive antibody responses to nsp1 and nsp2 of porcine reproductive and respiratory syndrome virus. J Gen Virol 88, 1184–1195.[CrossRef] [Google Scholar]
  20. Li, Y., Wang, X., Jing, P., Chen, W. & Wang, X.(2008). Genetic analysis of two porcine reproductive and respiratory syndrome viruses with different virulence isolated in China. Arch Virol 153, 1877–1884.[CrossRef] [Google Scholar]
  21. Lopez, O. J. & Osorio, F. A.(2004). Role of neutralizing antibodies in PRRSV protective immunity. Vet Immunol Immunopathol 102, 155–163.[CrossRef] [Google Scholar]
  22. Mateu, E. & Diaz, I.(2008). The challenge of PRRS immunology. Vet J 177, 345–351.[CrossRef] [Google Scholar]
  23. Meier, W. A., Galeota, J., Osorio, F. A., Husmann, R. J., Schnitzlein, W. M. & Zuckermann, F. A.(2003). Gradual development of the interferon-γ response of swine to porcine reproductive and respiratory syndrome virus infection or vaccination. Virology 309, 18–31.[CrossRef] [Google Scholar]
  24. Murtaugh, M. P., Xiao, Z. & Zuckermann, F.(2002). Immunological responses of swine to porcine reproductive and respiratory syndrome virus infection. Viral Immunol 15, 533–547.[CrossRef] [Google Scholar]
  25. Nelsen, C. J., Murtaugh, M. P. & Faaberg, K. S.(1999). Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 73, 270–280. [Google Scholar]
  26. Nelson, E. A., Christopher-Hennings, J., Wensvoort, G., Collins, J. E. & Benfield, D. A.(1993). Differentiation of United States and European isolates of porcine reproductive and respiratory syndrome (PRRS) virus using monoclonal antibodies. J Clin Microbiol 31, 3184–3189. [Google Scholar]
  27. Neumann, E. J., Kliebenstein, J. B., Johnson, C. D., Mabry, J. W., Bush, E. J., Seitzinger, A. H., Green, A. L. & Zimmerman, J. J.(2005). Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 227, 385–392.[CrossRef] [Google Scholar]
  28. Oleksiewicz, M. B., Botner, A., Toft, P., Normann, P. & Storgaard, T.(2001). Epitope mapping porcine reproductive and respiratory syndrome virus by phage display: the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes. J Virol 75, 3277–3290.[CrossRef] [Google Scholar]
  29. Ostrowski, M., Galeota, J. A., Jar, A. M., Platt, K. B., Osorio, F. A. & Lopez, O. J.(2002). Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain. J Virol 76, 4241–4250.[CrossRef] [Google Scholar]
  30. Pedersen, K. W., van der Meer, Y., Roos, N. & Snijder, E. J.(1999). Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J Virol 73, 2016–2026. [Google Scholar]
  31. Plagemann, P. G.(2004). The primary GP5 neutralization epitope of North American isolates of porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 102, 263–275.[CrossRef] [Google Scholar]
  32. Pudupakam, R. S., Huang, Y. W., Opriessnig, T., Halbur, P. G., Pierson, F. W. & Meng, X. J.(2009). Deletions of the hypervariable region (HVR) in open reading frame 1 of hepatitis E virus do not abolish virus infectivity: evidence for attenuation of HVR deletion mutants in vivo. J Virol 83, 384–395.[CrossRef] [Google Scholar]
  33. Ropp, S. L., Mahlum Wees, C. E., Fang, Y., Nelson, E. A., Rossow, K. D., Bien, M., Arndt, B., Preszler, S., Steen, P. & other authors(2004). Characterization of emerging European-like PRRSV isolates in the United States. J Virol 78, 3684–3703.[CrossRef] [Google Scholar]
  34. Rothbard, J. B. & Taylor, W. R.(1988). A sequence pattern common to T cell epitopes. EMBO J 7, 93–100. [Google Scholar]
  35. Royaee, A. R., Husmann, R., Dawson, H. D., Calzada-Nova, G., Schnitzlein, W. M., Zuckermann, F. & Lunney, J. K.(2004). Deciphering the involvement of innate immune factors in the development of the host responses to PRRSV vaccination. Vet Immunol Immunopathol 102, 199–216.[CrossRef] [Google Scholar]
  36. Sette, A., Buus, S., Appella, E., Smith, J. A., Chesnut, R., Miles, C., Colon, S. M. & Grey, H. M.(1989). Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc Natl Acad Sci U S A 86, 3296–3300.[CrossRef] [Google Scholar]
  37. Shen, S., Kwang, J., Liu, W. & Liu, D. X.(2000). Determination of the complete nucleotide sequence of a vaccine strain of porcine reproductive and respiratory syndrome virus and identification of the Nsp2 gene with a unique insertion. Arch Virol 145, 871–883.[CrossRef] [Google Scholar]
  38. Snijder, E. J. & Meulenberg, J. J.(1998). The molecular biology of arteriviruses. J Gen Virol 79, 961–979. [Google Scholar]
  39. Snijder, E. J., Wassenaar, A. L. M. & Spaan, W. J. M.(1994). Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J Virol 68, 5755–5764. [Google Scholar]
  40. Snijder, E. J., Wassenaar, A. L. M., Spaan, W. J. & Gorbalenya, A. E.(1995). The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J Biol Chem 270, 16671–16676.[CrossRef] [Google Scholar]
  41. Snijder, E. J., van Tol, H., Roos, N. & Pedersen, K. W.(2001). Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. J Gen Virol 82, 985–994. [Google Scholar]
  42. Tian, K., Yu, X., Zhao, T., Feng, Y., Cao, Z., Wang, C., Hu, Y., Chen, X., Hu, D. & other authors(2007). Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PLoS One 2, e526[CrossRef] [Google Scholar]
  43. van Dinten, L. C., Wassenaar, A. L., Gorbalenya, A. E., Spaan, W. J. & Snijder, E. J.(1996). Processing of the equine arteritis virus replicase ORF1b protein: identification of cleavage products containing the putative viral polymerase and helicase domains. J Virol 70, 6625–6633. [Google Scholar]
  44. Wasilk, A., Callahan, J., Christopher-Hennings, J., Gay, B. T., Fang, Y., Dammen, M., Reos, M. E., Torremorell, M., Polson, D. & other authors(2004). Detection of U.S. and Lelystad/European-like porcine reproductive and respiratory syndrome virus and relative quantitation in boar semen and serum by real-time PCR. J Clin Microbiol 42, 4453–4461.[CrossRef] [Google Scholar]
  45. Wassenaar, A. L., Spaan, W. J., Gorbalenya, A. E. & Snijder, E. J.(1997). Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that Nsp2 acts as a cofactor for the Nsp4 serine protease. J Virol 71, 9313–9322. [Google Scholar]
  46. Wu, W. H., Fang, Y., Farwell, R., Steffen-Bien, M., Rowland, R. R. R., Christopher-Hennings, J. & Nelson, E. A.(2001). A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology 287, 183–191.[CrossRef] [Google Scholar]
  47. Zeman, D., Neiger, R., Yaeger, M., Nelson, E., Benfield, D., Leslie-Steen, P., Thomson, J., Miskimins, D., Daly, R. & Minehart, M.(1993). Laboratory investigation of PRRS virus infection in three swine herds. J Vet Diagn Invest 5, 522–528.[CrossRef] [Google Scholar]
  48. Zhou, L., Zhang, J., Zeng, J., Yin, S., Li, Y., Zheng, L., Guo, X., Ge, X. & Yang, H.(2009). The 30 amino acids deletion in Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China is not related to its virulence. J Virol 83, 5156–5167.[CrossRef] [Google Scholar]
  49. Ziebuhr, J., Snijder, E. J. & Gorbalenya, A. E.(2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81, 853–879. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.016212-0
Loading
/content/journal/jgv/10.1099/vir.0.016212-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1047 –1057

Oligonucleotide primers utilized in this study [ PDF] (67 KB)



PDF

Most cited Most Cited RSS feed