Little is known about how some plant viruses establish successful cross-species transmission whilst others do not; the genetic basis for adaptation is largely unknown. This study investigated the genetic changes that occurred using the progeny of an infectious clone, p35Tunos, derived from the turnip mosaic virus (TuMV) UK 1 isolate, which has a host type, but rarely infects systemically and then only asymptomatically. The genetic trajectory leading to viral adaptation was studied in a TuMV isolate passaged in (parental), , the old (susceptible) host and , the new (almost insusceptible) host. Almost-complete consensus genomic sequences were obtained by RT-PCR of viral populations passaged up to 35 times together with 59 full sequences of 578 200 nt. There were significant differences in the nucleotide and encoded amino acid changes in the consensus genomes from the old and new hosts. Furthermore, a 3264 nt region corresponding to nt 3222–6485 of the UK 1 genome was cloned, and 269 clones from 23 populations were sequenced; this region covered 33 % of the genome and represented a total of 878 016 nt. The results showed that the nucleotide diversity and the non-synonymous/synonymous ratio of the populations from the new host were higher than those from the old host. An analysis of molecular variance showed significant differences among the populations from the old and new hosts. As far as is known, this is the first report comparing the evolutionary trajectory dynamics of plant virus populations in old and new hosts.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ali, A., Li, H., Schneider, W. L., Sherman, D. J., Gray, S., Smith, D. & Roossinck, M. J.(2006). Analysis of genetic bottlenecks during horizontal transmission of Cucumber mosaic virus. J Virol 80, 8345–8350.[CrossRef] [Google Scholar]
  2. Badgett, M. R., Auer, A., Carmichael, L. E., Parrish, C. R. & Bull, J. J.(2002). Evolutionary dynamics of viral attenuation. J Virol 76, 10524–10529.[CrossRef] [Google Scholar]
  3. Berger, P. H., Adams, M. J., Brunt, A. A., Hammond, J., Hill, J. H., Jordan, R. L., Kashiwazalci, S., Rybicki, E., Spence, N. & Stenger, D. C.(2005). Family Potyviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses. Eighth Report of the International Committee on Taxonomy of Viruses, pp. 819–841. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego, CA: Elsevier Academic Press.
  4. Bull, J. J., Badgett, M. R., Wichman, H. A., Huelsenbeck, J. P., Hillis, D. M., Gulati, A., Ho, C. & Molineux, I. J.(1997). Exceptional convergent evolution in a virus. Genetics 147, 1497–1507. [Google Scholar]
  5. Carrillo, C., Lu, Z., Borca, M. V., Vagnozzi, A., Kutish, G. F. & Rock, D. L.(2007). Genetic and phenotypic variation of foot-and-mouth disease virus during serial passages in a natural host. J Virol 81, 11341–11351.[CrossRef] [Google Scholar]
  6. Clark, M. F. & Adams, A. N.(1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34, 475–485.[CrossRef] [Google Scholar]
  7. Clement, M., Posada, D. & Crandall, K. A.(2000).tcs: a computer program to estimate gene genealogies. Mol Ecol 9, 1657–1660.[CrossRef] [Google Scholar]
  8. Crill, W. D., Wichman, H. A. & Bull, J. J.(2000). Evolutionary reversals during viral adaptation to alternating hosts. Genetics 154, 27–37. [Google Scholar]
  9. Domingo, E., Escarmís, C., Menéndez-Arias, L., Perales, C., Herrera, M., Novella, S. & Holland, J. J.(2008). Viral quasispecies: dynamics, interactions, and pathogenesis. In Origin and Evolution of Viruses, 2nd edn, pp. 87–118. Edited by E. Domingo, C. R. Parrish & J. J. Holland. Elsevier Academic Press.
  10. Eigen, M.(1996). On the nature of virus quasispecies. Trends Microbiol 4, 216–218.[CrossRef] [Google Scholar]
  11. Eigen, M. & Biebricher, C. K.(1988). Sequence space and quasispecies distribution. In RNA Genetics, vol. 3, pp. 211–245. Edited by E. Domingo, P. Ahlquist & J. J. Holland. Boca Raton, FL: CRC Press.
  12. Elena, S. F. & Sanjuán, R.(2007). Virus evolution: insights from an experimental approach. Annu Rev Ecol Syst 38, 27–52.[CrossRef] [Google Scholar]
  13. Excoffier, L., Laval, G. & Schneider, S.(2005). Arlequin (version 3.0): an integrated software package for population genetics data analyses. Evol Bioinform Online 1, 47–50. [Google Scholar]
  14. French, R. & Stenger, D. C.(2003). Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu Rev Phytopathol 41, 199–214.[CrossRef] [Google Scholar]
  15. French, R. & Stenger, D. C.(2005). Population structure within lineages of Wheat streak mosaic virus derived from a common founding event exhibits stochastic variation inconsistent with the deterministic quasi-species model. Virology 343, 179–189.[CrossRef] [Google Scholar]
  16. García-Arenal, F., Fraile, A. & Malpica, J. M.(2001). Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39, 157–186.[CrossRef] [Google Scholar]
  17. Gibbs, A. J., Ohshima, K., Gibbs, M. & Garciá-Arenal, F.(2008a). More about plant virus evolution; past, present and future. In Origin and Evolution of Viruses, 2nd edn, pp. 229–249. Edited by E. Domingo, C. R. Parrish & J. J. Holland. Elsevier Academic Press.
  18. Gibbs, A. J., Ohshima, K., Phillips, M. J. & Gibbs, M.(2008b). The prehistory of potyviruses: their initial radiation was during the dawn of agriculture. PLoS ONE 3, e2523[CrossRef] [Google Scholar]
  19. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  20. Hall, J. S., French, R., Hein, G. L., Morris, T. J. & Stenger, D. C.(2001). Three distinct mechanisms facilitate genetic isolation of sympatric wheat streak mosaic virus lineages. Virology 282, 230–236.[CrossRef] [Google Scholar]
  21. Hughes, A. L.(2009). Small effective population sizes and rare nonsynonymous variants in potyviruses. Virology 393, 127–134.[CrossRef] [Google Scholar]
  22. Iglesia, F. & Elena, S. F.(2007). Fitness declines in Tobacco etch virus upon serial bottleneck transfers. J Virol 81, 4941–4947.[CrossRef] [Google Scholar]
  23. Jenner, C. E., Sánchez, F., Nettleship, S. B., Foster, G. D., Ponz, F. & Walsh, J. A.(2000). The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01. Mol Plant Microbe Interact 13, 1102–1108.[CrossRef] [Google Scholar]
  24. Jenner, C. E., Tomimura, K., Ohshima, K., Hughes, S. L. & Walsh, J. A.(2002). Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300, 50–59.[CrossRef] [Google Scholar]
  25. Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F. & Walsh, J. A.(2003). The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16, 777–784.[CrossRef] [Google Scholar]
  26. Ji, J. P. & Loeb, L. A.(1992). Fidelity of HIV-1 reverse transcriptase copying RNA in vitro. Biochemistry 31, 954–958.[CrossRef] [Google Scholar]
  27. Kimura, M.(1980). A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  28. Kurath, G. & Palukaitis, P.(1989). RNA sequence heterogeneity in natural populations of three satellite RNAs of cucumber mosaic virus. Virology 173, 231–240.[CrossRef] [Google Scholar]
  29. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors(2007).clustalw and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef] [Google Scholar]
  30. Li, W.-H.(1997).Molecular Evolution. Sunderland, MA: Sinauer Associates.
  31. Li, H. & Roossinck, M. J.(2004). Genetic bottlenecks reduce population variation in an experimental RNA virus population. J Virol 78, 10582–10587.[CrossRef] [Google Scholar]
  32. Liang, X.-Z., Lee, B. T. K. & Wong, S.-M.(2002). Covariation in the capsid protein of hibiscus chlorotic ringspot virus induced by serial passaging in a host that restricts movement leads to avirulence in its systemic host. J Virol 76, 12320–12324.[CrossRef] [Google Scholar]
  33. Librado, P. & Rozas, J.(2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.[CrossRef] [Google Scholar]
  34. Moreno, I. M., Malpica, J. M., Díaz-Pendón, J. A., Moriones, E., Fraile, A. & Garcıá-Arenal, F.(2004). Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain. Virology 318, 451–460.[CrossRef] [Google Scholar]
  35. Novella, I. S.(2004). Negative effect of genetic bottlenecks on the adaptability of vesicular stomatitis virus. J Mol Biol 336, 61–67.[CrossRef] [Google Scholar]
  36. Ogawa, T., Tomitaka, Y., Nakagawa, A. & Ohshima, K.(2008). Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. Virus Res 131, 199–212.[CrossRef] [Google Scholar]
  37. Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamoto, T., Tomimura, K., Tan, Z., Sano, T., Azuhata, F., Walsh, J. A. & other authors(2002). Molecular evolution of Turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83, 1511–1521. [Google Scholar]
  38. Ohshima, K., Tomitaka, Y., Wood, J. T., Minematsu, Y., Kajiyama, H., Tomimura, K. & Gibbs, A. J.(2007). Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. J Gen Virol 88, 298–315.[CrossRef] [Google Scholar]
  39. Sacristán, S., Malpica, J. M., Fraile, A. & García-Arenal, F.(2003). Estimation of population bottlenecks during systemic movement of tobacco mosaic virus in tobacco plants. J Virol 77, 9906–9911.[CrossRef] [Google Scholar]
  40. Sacristán, S., Fraile, A., Malpica, J. M. & García-Arenal, F.(2005). An analysis of host adaptation and its relationship with virulence in Cucumber mosaic virus. Phytopathology 95, 827–833.[CrossRef] [Google Scholar]
  41. Sánchez, F., Martínez-Herrera, D., Aguilar, I. & Ponz, F.(1998). Infectivity of turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopisis thaliana and local lesion hosts. Virus Res 55, 207–219.[CrossRef] [Google Scholar]
  42. Sanjuán, R., Moya, A. & Elena, S. F.(2004). The contribution of epistasis to the architecture of fitness in an RNA virus. Proc Natl Acad Sci U S A 101, 15376–15379.[CrossRef] [Google Scholar]
  43. Sanjuán, R., Agudelo-Romero, P. & Elena, S. F.(2009). Upper-limit mutation rate estimation for a plant RNA virus. Biol Lett 5, 394–396.[CrossRef] [Google Scholar]
  44. Schneider, W. L. & Roossinck, M. J.(2000). Evolutionarily related Sindbis-like plant viruses maintain different levels of population diversity in a common host. J Virol 74, 3130–3134.[CrossRef] [Google Scholar]
  45. Schneider, W. L. & Roossinck, M. J.(2001). Genetic diversity in RNA virus quasispecies is controlled by host–virus interactions. J Virol 75, 6566–6571.[CrossRef] [Google Scholar]
  46. Seo, J.-K., Ohshima, K., Lee, H.-G., So, M., Choi, H.-S., Lee, S.-H., Sohn, S.-H. & Kim, K.-H.(2009). Molecular variability and genetic structure of the population of Soybean mosaic virus based on the analysis of complete genome sequences. Virology 393, 91–103.[CrossRef] [Google Scholar]
  47. Smith, D. B., McAllister, J., Casino, C. & Simmonds, P.(1997). Virus quasispecies: making a mountain out of a molehill? J Gen Virol 78, 1511–1519. [Google Scholar]
  48. Tan, Z., Wada, Y., Chen, J. & Ohshima, K.(2004). Inter- and intralineage recombinants are common in natural populations of Turnip mosaic virus. J Gen Virol 85, 2683–2696.[CrossRef] [Google Scholar]
  49. Tan, Z., Gibbs, A. J., Tomitaka, Y., Sánchez, F., Ponz, F. & Ohshima, K.(2005). Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus. J Gen Virol 86, 501–510.[CrossRef] [Google Scholar]
  50. Tomimura, K., Gibbs, A. J., Jenner, C. E., Walsh, J. A. & Ohshima, K.(2003). The phylogeny of Turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Mol Ecol 12, 2099–2111.[CrossRef] [Google Scholar]
  51. Tomimura, K., Špak, J., Katis, N., Jenner, C. E., Walsh, J. A., Gibbs, A. J. & Ohshima, K.(2004). Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. Virology 330, 408–423.[CrossRef] [Google Scholar]
  52. Tomitaka, Y. & Ohshima, K.(2006). A phylogeographic study of the Turnip mosaic virus population in east Asia reveals an ‘emergent’ lineage in Japan. Mol Ecol 15, 4437–4457.[CrossRef] [Google Scholar]
  53. Tomitaka, Y., Yamashita, T. & Ohshima, K.(2007). The genetic structure of populations of Turnip mosaic virus in Kyushu and central Honshu, Japan. J Gen Plant Pathol 73, 197–208.[CrossRef] [Google Scholar]
  54. Urcuqui-Inchima, S., Haenni, A.-L. & Bernardi, F.(2001). Potyvirus proteins: a wealth of functions. Virus Res 74, 157–175.[CrossRef] [Google Scholar]
  55. Wallis, C. M., Stone, A. L., Sherman, D. J., Damsteegt, V. D., Gildow, F. E. & Schneider, W. L.(2007). Adaptation of plum pox virus to a herbaceous host (Pisum sativum) following serial passages. J Gen Virol 88, 2839–2845.[CrossRef] [Google Scholar]
  56. Walsh, J. A. & Jenner, C. E.(2002).Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3, 289–300.[CrossRef] [Google Scholar]
  57. Wichman, H. A., Badgett, M. R., Scott, L. A., Boulianne, C. M. & Bull, J. J.(1999). Different trajectories of parallel evolution during viral adaptation. Science 285, 422–424.[CrossRef] [Google Scholar]
  58. Wichman, H. A., Millstein, J. & Bull, J. J.(2005). Adaptive molecular evolution for 13,000 phage generations: a possible arms race. Genetics 170, 19–31.[CrossRef] [Google Scholar]

Data & Media loading...


Shared, fixed and parallel evolution sites in the consensus and quasispecies sequences [ PDF] (178 KB; includes supplementary references)


Sequence changes found between p35Tunos and the variants of TuMV during passage in the old host, , and the new host, [ PDF] (88 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error