Regulation of Marburg virus (MARV) budding by Nedd4.1: a different WW domain of Nedd4.1 is critical for binding to MARV and Ebola virus VP40 Free

Abstract

The VP40 matrix protein of Marburg virus (MARV) has been shown to be the driving force behind MARV budding, a process in which the PPPY L-domain motif of VP40 plays a critical role. Here, we report that Vps4B and Nedd4.1 play critical roles in MARV VP40-mediated budding. We showed that unidentified activities of the Nedd4.1 HECT domain, along with its E3 ubiquitin ligase activity, may be required for MARV budding. Moreover, we showed that the first WW domain of Nedd4.1, WW1, is critical for binding to MARV VP40, indicating that MARV VP40 and Ebola virus VP40 are recognized by a different WW domain of Nedd4.1. This is the first report showing that the viral L-domains containing PPxY have specificities for binding to WW domains. Our findings provide new insights into MARV budding, which may contribute to the development of novel anti-MARV therapeutic strategies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.015495-0
2010-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/1/228.html?itemId=/content/journal/jgv/10.1099/vir.0.015495-0&mimeType=html&fmt=ahah

References

  1. Anan, T., Nagata, Y., Koga, H., Honda, Y., Yabuki, N., Miyamoto, C., Kuwano, A., Matsuda, I., Endo, F. & other authors(1998). Human ubiquitin-protein ligase Nedd4: expression, subcellular localization and selective interaction with ubiquitin-conjugating enzymes. Genes Cells 3, 751–763.[CrossRef] [Google Scholar]
  2. Becker, S., Spiess, M. & Klenk, H. D.(1995). The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. J Gen Virol 76, 393–399.[CrossRef] [Google Scholar]
  3. Blot, V., Perugi, F., Gay, B., Prevost, M. C., Briant, L., Tangy, F., Abriel, H., Staub, O., Dokhelar, M. C. & Pique, C.(2004). Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding. J Cell Sci 117, 2357–2367.[CrossRef] [Google Scholar]
  4. Bouamr, F., Melillo, J. A., Wang, M. Q., Nagashima, K., de Los Santos, M., Rein, A. & Goff, S. P.(2003). PPPYVEPTAP motif is the late domain of human T-cell leukemia virus type 1 Gag and mediates its functional interaction with cellular proteins Nedd4 and Tsg101. J Virol 77, 11882–11895.[CrossRef] [Google Scholar]
  5. Burleigh, L. M., Calder, L. J., Skehel, J. J. & Steinhauer, D. A.(2005). Influenza a viruses with mutations in the m1 helix six domain display a wide variety of morphological phenotypes. J Virol 79, 1262–1270.[CrossRef] [Google Scholar]
  6. Chen, B. J. & Lamb, R. A.(2008). Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology 372, 221–232.[CrossRef] [Google Scholar]
  7. Ciancanelli, M. J. & Basler, C. F.(2006). Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol 80, 12070–12078.[CrossRef] [Google Scholar]
  8. Dong, X., Li, H., Derdowski, A., Ding, L., Burnett, A., Chen, X., Peters, T. R., Dermody, T. S., Woodruff, E. & other authors(2005). AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 120, 663–674.[CrossRef] [Google Scholar]
  9. Garrus, J. E., von Schwedler, U. K., Pornillos, O. W., Morham, S. G., Zavitz, K. H., Wang, H. E., Wettstein, D. A., Stray, K. M., Cote, M. & other authors(2001). Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65.[CrossRef] [Google Scholar]
  10. Gosselin-Grenet, A. S., Marq, J. B., Abrami, L., Garcin, D. & Roux, L.(2007). Sendai virus budding in the course of an infection does not require Alix and VPS4A host factors. Virology 365, 101–112.[CrossRef] [Google Scholar]
  11. Gottlinger, H. G., Dorfman, T., Sodroski, J. G. & Haseltine, W. A.(1991). Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A 88, 3195–3199.[CrossRef] [Google Scholar]
  12. Gottwein, E., Bodem, J., Muller, B., Schmechel, A., Zentgraf, H. & Krausslich, H. G.(2003). The Mason–Pfizer monkey virus PPPY and PSAP motifs both contribute to virus release. J Virol 77, 9474–9485.[CrossRef] [Google Scholar]
  13. Harty, R. N., Paragas, J., Sudol, M. & Palese, P.(1999). A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J Virol 73, 2921–2929. [Google Scholar]
  14. Harty, R. N., Brown, M. E., Wang, G., Huibregtse, J. & Hayes, F. P.(2000). A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci U S A 97, 13871–13876.[CrossRef] [Google Scholar]
  15. Heidecker, G., Lloyd, P. A., Fox, K., Nagashima, K. & Derse, D.(2004). Late assembly motifs of human T-cell leukemia virus type 1 and their relative roles in particle release. J Virol 78, 6636–6648.[CrossRef] [Google Scholar]
  16. Heidecker, G., Lloyd, P. A., Soheilian, F., Nagashima, K. & Derse, D.(2007). The role of WWP1–Gag interaction and Gag ubiquitination in assembly and release of human T-cell leukemia virus type 1. J Virol 81, 9769–9777.[CrossRef] [Google Scholar]
  17. Huang, M., Orenstein, J. M., Martin, M. A. & Freed, E. O.(1995). p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69, 6810–6818. [Google Scholar]
  18. Irie, T., Shimazu, Y., Yoshida, T. & Sakaguchi, T.(2007). The YLDL sequence within Sendai virus M protein is critical for budding of virus-like particles and interacts with Alix/AIP1 independently of C protein. J Virol 81, 2263–2273.[CrossRef] [Google Scholar]
  19. Jasenosky, L. D., Neumann, G., Lukashevich, I. & Kawaoka, Y.(2001). Ebola virus VP40-induced particle formation and association with the lipid bilayer. J Virol 75, 5205–5214.[CrossRef] [Google Scholar]
  20. Jayakar, H. R., Murti, K. G. & Whitt, M. A.(2000). Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. J Virol 74, 9818–9827.[CrossRef] [Google Scholar]
  21. Kikonyogo, A., Bouamr, F., Vana, M. L., Xiang, Y., Aiyar, A., Carter, C. & Leis, J.(2001). Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proc Natl Acad Sci U S A 98, 11199–11204.[CrossRef] [Google Scholar]
  22. Kolesnikova, L., Bugany, H., Klenk, H. D. & Becker, S.(2002). VP40, the matrix protein of Marburg virus, is associated with membranes of the late endosomal compartment. J Virol 76, 1825–1838.[CrossRef] [Google Scholar]
  23. Kolesnikova, L., Bamberg, S., Berghofer, B. & Becker, S.(2004). The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway. J Virol 78, 2382–2393.[CrossRef] [Google Scholar]
  24. Kolesnikova, L., Bohil, A. B., Cheney, R. E. & Becker, S.(2007a). Budding of Marburgvirus is associated with filopodia. Cell Microbiol 9, 939–951.[CrossRef] [Google Scholar]
  25. Kolesnikova, L., Ryabchikova, E., Shestopalov, A. & Becker, S.(2007b). Basolateral budding of Marburg virus: VP40 retargets viral glycoprotein GP to the basolateral surface. J Infect Dis 196 (Suppl. 2), S232–S236.[CrossRef] [Google Scholar]
  26. Kolesnikova, L., Strecker, T., Morita, E., Zielecki, F., Mittler, E., Crump, C. & Becker, S.(2009). Vacuolar protein sorting pathway contributes to the release of Marburg virus. J Virol 83, 2327–2337.[CrossRef] [Google Scholar]
  27. Licata, J. M., Simpson-Holley, M., Wright, N. T., Han, Z., Paragas, J. & Harty, R. N.(2003). Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. J Virol 77, 1812–1819.[CrossRef] [Google Scholar]
  28. Martin-Serrano, J., Zang, T. & Bieniasz, P. D.(2003). Role of ESCRT-I in retroviral budding. J Virol 77, 4794–4804.[CrossRef] [Google Scholar]
  29. Martin-Serrano, J., Eastman, S. W., Chung, W. & Bieniasz, P. D.(2005). HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J Cell Biol 168, 89–101. [Google Scholar]
  30. Parent, L. J., Bennett, R. P., Craven, R. C., Nelle, T. D., Krishna, N. K., Bowzard, J. B., Wilson, C. B., Puffer, B. A., Montelaro, R. C. & Wills, J. W.(1995). Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J Virol 69, 5455–5460. [Google Scholar]
  31. Peters, C. J.(2005). Marburg and Ebola – arming ourselves against the deadly filoviruses. N Engl J Med 352, 2571–2573.[CrossRef] [Google Scholar]
  32. Plant, P. J., Yeger, H., Staub, O., Howard, P. & Rotin, D.(1997). The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J Biol Chem 272, 32329–32336.[CrossRef] [Google Scholar]
  33. Sakurai, A., Yasuda, J., Takano, H., Tanaka, Y., Hatakeyama, M. & Shida, H.(2004). Regulation of human T-cell leukemia virus type 1 (HTLV-1) budding by ubiquitin ligase Nedd4. Microbes Infect 6, 150–156.[CrossRef] [Google Scholar]
  34. Schmitt, A. P., Leser, G. P., Morita, E., Sundquist, W. I. & Lamb, R. A.(2005). Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus. J Virol 79, 2988–2997.[CrossRef] [Google Scholar]
  35. Strecker, T., Eichler, R., Meulen, J., Weissenhorn, W., Dieter Klenk, H., Garten, W. & Lenz, O.(2003). Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles. J Virol 77, 10700–10705.[CrossRef] [Google Scholar]
  36. Sudol, M.(1996). Structure and function of the WW domain. Prog Biophys Mol Biol 65, 113–132. [Google Scholar]
  37. Swenson, D. L., Warfield, K. L., Kuehl, K., Larsen, T., Hevey, M. C., Schmaljohn, A., Bavari, S. & Aman, M. J.(2004). Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunol Med Microbiol 40, 27–31.[CrossRef] [Google Scholar]
  38. Timmins, J., Schoehn, G., Ricard-Blum, S., Scianimanico, S., Vernet, T., Ruigrok, R. W. & Weissenhorn, W.(2003). Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. J Mol Biol 326, 493–502.[CrossRef] [Google Scholar]
  39. Urata, S., Noda, T., Kawaoka, Y., Yokosawa, H. & Yasuda, J.(2006). Cellular factors required for Lassa virus budding. J Virol 80, 4191–4195.[CrossRef] [Google Scholar]
  40. Urata, S., Noda, T., Kawaoka, Y., Morikawa, S., Yokosawa, H. & Yasuda, J.(2007a). Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP. J Virol 81, 4895–4899.[CrossRef] [Google Scholar]
  41. Urata, S., Yokosawa, H. & Yasuda, J.(2007b). Regulation of HTLV-1 Gag budding by Vps4A, Vps4B, and AIP1/Alix. Virol J 4, 66[CrossRef] [Google Scholar]
  42. Wills, J. W., Cameron, C. E., Wilson, C. B., Xiang, Y., Bennett, R. P. & Leis, J.(1994). An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J Virol 68, 6605–6618. [Google Scholar]
  43. Yasuda, J. & Hunter, E.(1998). A proline-rich motif (PPPY) in the Gag polyprotein of Mason–Pfizer monkey virus plays a maturation-independent role in virion release. J Virol 72, 4095–4103. [Google Scholar]
  44. Yasuda, J., Hunter, E., Nakao, M. & Shida, H.(2002). Functional involvement of a novel Nedd4-like ubiquitin ligase on retrovirus budding. EMBO Rep 3, 636–640.[CrossRef] [Google Scholar]
  45. Yasuda, J., Nakao, M., Kawaoka, Y. & Shida, H.(2003). Nedd4 regulates egress of Ebola virus-like particles from host cells. J Virol 77, 9987–9992.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.015495-0
Loading
/content/journal/jgv/10.1099/vir.0.015495-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed