1887

Abstract

Hepatitis C virus (HCV) infection is increasingly associated with the development of hepatocellular carcinoma (HCC). HCV is not thought to be directly oncogenic but, by modulating a range of cellular functions, may predispose patients to the development of liver tumours. However, the molecular mechanisms by which HCV infection might contribute to HCC remain to be characterized. In this regard, we showed previously that the HCV NS5A protein bound to the p85 regulatory subunit of phosphoinositide-3 kinase (PI3K), thereby stimulating the activity of the p110 catalytic subunit of the enzyme. One of the downstream consequences of this was the stabilization of the proto-oncogene, -catenin, with a concomitant stimulation of its transcriptional activity. Here, we further analyse the mechanism by which NS5A mediates activation of -catenin. Although our previous data were consistent with a role for the PI3K downstream effector kinases, Akt and glycogen synthase kinase-3, in NS5A-mediated activation of -catenin, we demonstrate here that it is in fact independent of both of these kinases. Truncation analysis revealed that both the N and C termini of NS5A are required for full activation of -catenin. Furthermore, we demonstrate that NS5A, either alone or in complex with p85, is able to bind directly to -catenin; again both N and C termini contribute to this interaction. We propose that NS5A activates -catenin via a novel mechanism that involves a direct interaction between the two proteins and is augmented by PI3K activity. This may contribute to the association between chronic HCV infection and the development of HCC.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.015305-0
2010-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/2/373.html?itemId=/content/journal/jgv/10.1099/vir.0.015305-0&mimeType=html&fmt=ahah

References

  1. Anzola, M.(2004). Hepatocellular carcinoma: role of hepatitis B and hepatitis C viruses proteins in hepatocarcinogenesis. J Viral Hepat 11, 383–393.[CrossRef] [Google Scholar]
  2. Barker, N., Morin, P. J. & Clevers, H.(2000). The Yin–Yang of TCF/β-catenin signaling. Adv Cancer Res 77, 1–24. [Google Scholar]
  3. Brass, V., Bieck, E., Montserret, R., Wolk, B., Hellings, J. A., Blum, H. E., Penin, F. & Moradpour, D.(2002). An amino-terminal amphipathic α-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. J Biol Chem 277, 8130–8139.[CrossRef] [Google Scholar]
  4. Cha, M. Y., Kim, C. M., Park, Y. M. & Ryu, W. S.(2004). Hepatitis B virus X protein is essential for the activation of Wnt/β-catenin signaling in hepatoma cells. Hepatology 39, 1683–1693.[CrossRef] [Google Scholar]
  5. Daugherty, R. L. & Gottardi, C. J.(2007). Phospho-regulation of β-catenin adhesion and signaling functions. Physiology (Bethesda) 22, 303–309.[CrossRef] [Google Scholar]
  6. de La Coste, A., Romagnolo, B., Billuart, P., Renard, C. A., Buendia, M. A., Soubrane, O., Fabre, M., Chelly, J., Beldjord, C. & other authors(1998). Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 95, 8847–8851.[CrossRef] [Google Scholar]
  7. Desbois-Mouthon, C., Eggelpoel, M. J. B. V., Beurel, E., Boissan, M., Delelo, R., Cadoret, A. & Capeau, J.(2002). Dysregulation of glycogen synthase kinase-3β signaling in hepatocellular carcinoma cells. Hepatology 36, 1528–1536.[CrossRef] [Google Scholar]
  8. Espada, J., Peinado, H., Esteller, M. & Cano, A.(2005). Direct metabolic regulation of β-catenin activity by the p85α regulatory subunit of phosphoinositide 3-OH kinase. Exp Cell Res 305, 409–417.[CrossRef] [Google Scholar]
  9. Fang, D., Hawke, D., Zheng, Y., Xia, Y., Meisenhelder, J., Nika, H., Mills, G. B., Kobayashi, R., Hunter, T. & Lu, Z.(2007). Phosphorylation of β-catenin by AKT promotes β-catenin transcriptional activity. J Biol Chem 282, 11221–11229.[CrossRef] [Google Scholar]
  10. Fujimuro, M., Wu, F. Y., ApRhys, C., Kajumbula, H., Young, D. B., Hayward, G. S. & Hayward, S. D.(2003). A novel viral mechanism for dysregulation of β-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat Med 9, 300–306.[CrossRef] [Google Scholar]
  11. Gan, D. D. & Khalili, K.(2004). Interaction between JCV large T-antigen and β-catenin. Oncogene 23, 483–490.[CrossRef] [Google Scholar]
  12. Gavert, N. & Ben-Ze’ev, A.(2007).β-Catenin signaling in biological control and cancer. J Cell Biochem 102, 820–828.[CrossRef] [Google Scholar]
  13. Gosert, R., Egger, D., Lohmann, V., Bartenschlager, R., Blum, H. E., Bienz, K. & Moradpour, D.(2003). Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J Virol 77, 5487–5492.[CrossRef] [Google Scholar]
  14. Green, S., Issemann, I. & Sheer, E.(1988). A versatile in vivo and in vitro eukaryotic expression vector for protein engineering. Nucleic Acids Res 16, 369[CrossRef] [Google Scholar]
  15. Hagen, T., Di, D. E., Culbert, A. A. & Reith, A. D.(2002). Expression and characterization of GSK-3 mutants and their effect on β-catenin phosphorylation in intact cells. J Biol Chem 277, 23330–23335.[CrossRef] [Google Scholar]
  16. Hagen, T., Sethi, J. K., Foxwell, N. & Vidal-Puig, A.(2004). Signalling activity of β-catenin targeted to different subcellular compartments. Biochem J 379, 471–477.[CrossRef] [Google Scholar]
  17. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B. & Kinzler, K. W.(1998). Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512.[CrossRef] [Google Scholar]
  18. He, Y., Nakao, H. H., Tan, S. L., Polyak, P. J., Neddermann, P., Vijaysri, S., Jacobs, B. L. & Katze, M. G.(2002). Subversion of cell signaling pathways by hepatitis C virus nonstructural 5A protein via interaction with Grb2 and P85 phosphatidylinositol 3-kinase. J Virol 76, 9207–9217.[CrossRef] [Google Scholar]
  19. Jang, K. L., Shackelford, J., Seo, S. Y. & Pagano, J. S.(2005). Up-regulation of β-catenin by a viral oncogene correlates with inhibition of the seven in absentia homolog 1 in B lymphoma cells. Proc Natl Acad Sci U S A 102, 18431–18436.[CrossRef] [Google Scholar]
  20. Krieger, N., Lohmann, V. & Bartenschlager, R.(2001). Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol 75, 4614–4624.[CrossRef] [Google Scholar]
  21. Macdonald, A. & Harris, M.(2004). Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol 85, 2485–2502.[CrossRef] [Google Scholar]
  22. Macdonald, A., Crowder, K., Street, A., McCormick, C., Saksela, K. & Harris, M.(2003). The hepatitis C virus NS5A protein inhibits activating protein-1 (AP1) function by perturbing Ras–ERK pathway signalling. J Biol Chem 278, 17775–17784.[CrossRef] [Google Scholar]
  23. Moon, R. T., Kohn, A. D., De Ferrari, G. V. & Kaykas, A.(2004). WNT and β-catenin signalling: diseases and therapies. Nat Rev Genet 5, 691–701.[CrossRef] [Google Scholar]
  24. Morrison, J. A., Klingelhutz, A. J. & Raab-Traub, N.(2003). Epstein–Barr virus latent membrane protein 2A activates β-catenin signaling in epithelial cells. J Virol 77, 12276–12284.[CrossRef] [Google Scholar]
  25. Park, C. Y., Choi, S. H., Kang, S. M., Kang, J. I., Ahn, B. Y., Kim, H., Jung, G., Choi, K. Y. & Hwang, S. B.(2009). Nonstructural 5A protein activates β-catenin signaling cascades: implication of hepatitis C virus-induced liver pathogenesis. J Hepatol 51, 853–864.[CrossRef] [Google Scholar]
  26. Rashid, S., Pilecka, I., Torun, A., Olchowik, M., Bielinska, B. & Miaczynska, M.(2009). Endosomal adaptor proteins APPL1 and APPL2 are novel activators of β-catenin/TCF-mediated transcription. J Biol Chem 284, 18115–18128.[CrossRef] [Google Scholar]
  27. Shackelford, J., Maier, C. & Pagano, J. S.(2003). Epstein–Barr virus activates β-catenin in type III latently infected B lymphocyte lines: association with deubiquitinating enzymes. Proc Natl Acad Sci U S A 100, 15572–15576.[CrossRef] [Google Scholar]
  28. Street, A., Macdonald, A., Crowder, K. & Harris, M.(2004). The hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase dependent survival signalling cascade. J Biol Chem 279, 12232–12241.[CrossRef] [Google Scholar]
  29. Street, A., Macdonald, A., McCormick, C. & Harris, M.(2005). Hepatitis C virus NS5A-mediated activation of phosphoinositide 3-kinase results in stabilization of cellular β-catenin and stimulation of β-catenin-responsive transcription. J Virol 79, 5006–5016.[CrossRef] [Google Scholar]
  30. Taurin, S., Sandbo, N., Qin, Y., Browning, D. & Dulin, N. O.(2006). Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 281, 9971–9976.[CrossRef] [Google Scholar]
  31. Tetsu, O. & McCormick, F.(1999).β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426.[CrossRef] [Google Scholar]
  32. Tomita, M., Kikuchi, A., Akiyama, T., Tanaka, Y. & Mori, N.(2006). Human T-cell leukemia virus type 1 tax dysregulates β-catenin signaling. J Virol 80, 10497–10505.[CrossRef] [Google Scholar]
  33. Woodfield, R. J., Hodgkin, M. N., Akhtar, N., Morse, M. A., Fuller, K. J., Saqib, K., Thompson, N. T. & Wakelam, M. J.(2001). The p85 subunit of phosphoinositide 3-kinase is associated with β-catenin in the cadherin-based adhesion complex. Biochem J 360, 335–344.[CrossRef] [Google Scholar]
  34. Yanagi, M., Purcell, R. H., Emerson, S. U. & Bukh, J.(1997). Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc Natl Acad Sci U S A 94, 8738–8743.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.015305-0
Loading
/content/journal/jgv/10.1099/vir.0.015305-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error