1887

Abstract

Fusion of the influenza A H1N1 virus envelope with the endosomal membrane at low pH allows the intracellular delivery of the viral genome and plays an essential role in the infection process. Low pH induces an irreversible modification of the virus envelope, which has so far resisted 3D structural analysis, partly due to the virus pleiomorphy. This study showed that atomic force microscopy (AFM) in physiological buffer could be used to image the structural details of the virus envelope, both at neutral pH and after a low-pH treatment. At low and intermediate magnification, AFM of control virions confirmed both the pleiomorphy and the existence of zones devoid of glycoprotein spikes at the virus surface, as established by electron microscopy (EM). At higher magnification, the unique vertical resolution of the AFM in 3D topography demonstrated the lateral heterogeneity in spike distribution and strongly suggested that, at least locally, the spikes can be organized in an irregular honeycomb pattern. The surface honeycomb pattern was more easily detected due to an increase in spike height following low-pH treatment at low temperature, which probably prevented disruption of the organization. This enhanced contrast associated with low-pH treatment emphasized differences in the glycoprotein distribution between virions. It was concluded that, together with EM approaches, AFM may help to establish a correlation between surface structure and influenza virus infectivity/pathogenicity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.015156-0
2010-02-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/2/329.html?itemId=/content/journal/jgv/10.1099/vir.0.015156-0&mimeType=html&fmt=ahah

References

  1. Apostolov, K. & Flewett, T. H. ( 1969; ). Further observations on the structure of influenza viruses A and C. J Gen Virol 4, 365–370.[CrossRef]
    [Google Scholar]
  2. Archetti, I., Jemolo, A., Steve-Bocciarelli, D., Arangio-Ruiz, G. & Tangucci, F. ( 1967; ). On the fine structure of influenza viruses. Arch Gesamte Virusforsch 20, 133–136.[CrossRef]
    [Google Scholar]
  3. Barman, S., Adhikary, L., Chakrabarti, A. K., Bernas, C., Kawaoka, Y. & Nayak, D. P. ( 2004; ). Role of transmembrane domain and cytoplasmic tail amino acid sequences of influenza A virus neuraminidase in raft association and virus budding. J Virol 78, 5258–5269.[CrossRef]
    [Google Scholar]
  4. Booy, F. P., Ruigrok, R. W. & van Bruggen, E. F. ( 1985; ). Electron microscopy of influenza virus. A comparison of negatively stained and ice-embedded particles. J Mol Biol 184, 667–676.[CrossRef]
    [Google Scholar]
  5. Campbell, J. N., Epand, R. M. & Russo, P. S. ( 2004; ). Structural changes and aggregation of human influenza virus. Biomacromolecules 5, 1728–1735.[CrossRef]
    [Google Scholar]
  6. Danieli, T., Pelletier, S. L., Henis, Y. I. & White, J. M. ( 1996; ). Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J Cell Biol 133, 559–569.[CrossRef]
    [Google Scholar]
  7. Doms, R. W. & Helenius, A. ( 1986; ). Quaternary structure of influenza virus hemagglutinin after acid treatment. J Virol 60, 833–839.
    [Google Scholar]
  8. Engel, A., Schoenenberger, C. A. & Muller, D. J. ( 1997; ). High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr Opin Struct Biol 7, 279–284.[CrossRef]
    [Google Scholar]
  9. Fechner, P., Boudier, T., Mangenot, S., Jaroslawski, S., Sturgis, J. N. & Scheuring, S. ( 2009; ). Structural information, resolution, and noise in high-resolution atomic force microscopy topographs. Biophys J 96, 3822–3831.[CrossRef]
    [Google Scholar]
  10. Ferreira, G. P., Trindade, G. S., Vilela, J. M., Da Silva, M. I., Andrade, M. S. & Kroon, E. G. ( 2008; ). Climbing the steps of viral atomic force microscopy: visualization of Dengue virus particles. J Microsc 231, 180–185.[CrossRef]
    [Google Scholar]
  11. Floyd, D. L., Ragains, J. R., Skehel, J. J., Harrison, S. C. & van Oijen, A. M. ( 2008; ). Single-particle kinetics of influenza virus membrane fusion. Proc Natl Acad Sci U S A 105, 15382–15387.[CrossRef]
    [Google Scholar]
  12. Fujiyoshi, Y., Kume, N. P., Sakata, K. & Sato, S. B. ( 1994; ). Fine structure of influenza A virus observed by electron cryo-microscopy. EMBO J 13, 318–326.
    [Google Scholar]
  13. Gamblin, S. J., Haire, L. F., Russell, R. J., Stevens, D. J., Xiao, B., Ha, Y., Vasisht, N., Steinhauer, D. A., Daniels, R. S. & other authors ( 2004; ). The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303, 1838–1842.[CrossRef]
    [Google Scholar]
  14. Giocondi, M. C., Vie, V., Lesniewska, E., Goudonnet, J. P. & Le Grimellec, C. ( 2000; ). In situ imaging of detergent-resistant membranes by atomic force microscopy. J Struct Biol 131, 38–43.[CrossRef]
    [Google Scholar]
  15. Godley, L., Pfeifer, J., Steinhauer, D., Ely, B., Shaw, G., Kaufmann, R., Suchanek, E., Pabo, C., Skehel, J. J. & other authors ( 1992; ). Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell 68, 635–645.[CrossRef]
    [Google Scholar]
  16. Goldstein, M. A. & Tauraso, N. M. ( 1970; ). Effect of formalin, β-propiolactone, merthiolate, and ultraviolet light upon influenza virus infectivity chicken cell agglutination, hemagglutination, and antigenicity. Appl Microbiol 19, 290–294.
    [Google Scholar]
  17. Gruenke, J. A., Armstrong, R. T., Newcomb, W. W., Brown, J. C. & White, J. M. ( 2002; ). New insights into the spring-loaded conformational change of influenza virus hemagglutinin. J Virol 76, 4456–4466.[CrossRef]
    [Google Scholar]
  18. Grunewald, K. & Cyrklaff, M. ( 2006; ). Structure of complex viruses and virus-infected cells by electron cryo tomography. Curr Opin Microbiol 9, 437–442.[CrossRef]
    [Google Scholar]
  19. Haberle, W., Horber, J. K., Ohnesorge, F., Smith, D. P. & Binnig, G. ( 1992; ). In situ investigations of single living cells infected by viruses. Ultramicroscopy 42–44, (Pt B), 1161–1167.
    [Google Scholar]
  20. Harris, A., Cardone, G., Winkler, D. C., Heymann, J. B., Brecher, M., White, J. M. & Steven, A. C. ( 2006; ). Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci U S A 103, 19123–19127.[CrossRef]
    [Google Scholar]
  21. Hernandez, L. D., Hoffman, L. R., Wolfsberg, T. G. & White, J. M. ( 1996; ). Virus–cell and cell–cell fusion. Annu Rev Cell Dev Biol 12, 627–661.[CrossRef]
    [Google Scholar]
  22. Hoyle, L., Horne, R. W. & Waterson, A. P. ( 1961; ). The structure and composition of the myxoviruses. II. Components released from the influenza virus particle by ether. Virology 13, 448–459.[CrossRef]
    [Google Scholar]
  23. Jin, H., Leser, G. P., Zhang, J. & Lamb, R. A. ( 1997; ). Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J 16, 1236–1247.[CrossRef]
    [Google Scholar]
  24. Kanaseki, T., Kawasaki, K., Murata, M., Ikeuchi, Y. & Ohnishi, S. ( 1997; ). Structural features of membrane fusion between influenza virus and liposome as revealed by quick-freezing electron microscopy. J Cell Biol 137, 1041–1056.[CrossRef]
    [Google Scholar]
  25. Kol, N., Gladnikoff, M., Barlam, D., Shneck, R. Z., Rein, A. & Rousso, I. ( 2006; ). Mechanical properties of murine leukemia virus particles: effect of maturation. Biophys J 91, 767–774.[CrossRef]
    [Google Scholar]
  26. Kuznetsov, Y. G. & McPherson, A. ( 2006; ). Atomic force microscopy investigation of Turnip yellow mosaic virus capsid disruption and RNA extrusion. Virology 352, 329–337.[CrossRef]
    [Google Scholar]
  27. Kuznetsov, Y. G., Malkin, A. J., Lucas, R. W., Plomp, M. & McPherson, A. ( 2001; ). Imaging of viruses by atomic force microscopy. J Gen Virol 82, 2025–2034.
    [Google Scholar]
  28. Kuznetsov, Y. G., Victoria, J. G., Robinson, W. E., Jr & McPherson, A. ( 2003; ). Atomic force microscopy investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytes. J Virol 77, 11896–11909.[CrossRef]
    [Google Scholar]
  29. Kuznetsov, Y. G., Low, A., Fan, H. & McPherson, A. ( 2004; ). Atomic force microscopy investigation of wild-type Moloney murine leukemia virus particles and virus particles lacking the envelope protein. Virology 323, 189–196.[CrossRef]
    [Google Scholar]
  30. Kuznetsov, Y. G., Gurnon, J. R., Van Etten, J. L. & McPherson, A. ( 2005; ). Atomic force microscopy investigation of a chlorella virus, PBCV-1. J Struct Biol 149, 256–263.[CrossRef]
    [Google Scholar]
  31. Laver, W. G. ( 1973; ). The polypeptides of influenza viruses. Adv Virus Res 18, 57–103.
    [Google Scholar]
  32. Lee, J. H., Goulian, M. & Boder, E. T. ( 2006; ). Autocatalytic activation of influenza hemagglutinin. J Mol Biol 364, 275–282.[CrossRef]
    [Google Scholar]
  33. Lin, S., Lee, C. K., Lee, S. Y., Kao, C. L., Lin, C. W., Wang, A. B., Hsu, S. M. & Huang, L. S. ( 2005; ). Surface ultrastructure of SARS coronavirus revealed by atomic force microscopy. Cell Microbiol 7, 1763–1770.[CrossRef]
    [Google Scholar]
  34. Lovas, B. & Takatsy, G. ( 1965; ). Studies on the fine structure of the influenza virion. Arch Virol 17, 67–72.
    [Google Scholar]
  35. Maeda, T., Kawasaki, K. & Ohnishi, S. ( 1981; ). Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2. Proc Natl Acad Sci U S A 78, 4133–4137.[CrossRef]
    [Google Scholar]
  36. Matlin, K. S., Reggio, H., Helenius, A. & Simons, K. ( 1981; ). Infectious entry pathway of influenza virus in a canine kidney cell line. J Cell Biol 91, 601–613.[CrossRef]
    [Google Scholar]
  37. Muller, D. J., Fotiadis, D., Scheuring, S., Muller, S. A. & Engel, A. ( 1999; ). Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys J 76, 1101–1111.[CrossRef]
    [Google Scholar]
  38. Nermut, M. V. ( 1972; ). Further investigation on the fine structure of influenza virus. J Gen Virol 17, 317–331.[CrossRef]
    [Google Scholar]
  39. Nermut, M. V. & Frank, H. ( 1971; ). Fine structure of influenza A2 (Singapore) as revealed by negative staining, freeze-drying and freeze-etching. J Gen Virol 10, 37–51.[CrossRef]
    [Google Scholar]
  40. Noda, T., Sagara, H., Yen, A., Takada, A., Kida, H., Cheng, R. H. & Kawaoka, Y. ( 2006; ). Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439, 490–492.[CrossRef]
    [Google Scholar]
  41. Puri, A., Booy, F. P., Doms, R. W., White, J. M. & Blumenthal, R. ( 1990; ). Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment. J Virol 64, 3824–3832.
    [Google Scholar]
  42. Putman, C. A., van der Werf, K. O., De Grooth, B. G., van Hulst, N. F., Greve, J. & Hansma, P. K. ( 1992; ). A new imaging mode in atomic force microscopy based on the error signal. Proc Soc Photo Opt Instrum Eng 1639, 198–204.
    [Google Scholar]
  43. Ruigrok, R. W., Cremers, A. F., Beyer, W. E. & de Ronde-Verloop, F. M. ( 1984; ). Changes in the morphology of influenza particles induced at low pH. Arch Virol 82, 181–194.[CrossRef]
    [Google Scholar]
  44. Ruigrok, R. W., Wrigley, N. G., Calder, L. J., Cusack, S., Wharton, S. A., Brown, E. B. & Skehel, J. J. ( 1986; ). Electron microscopy of the low pH structure of influenza virus haemagglutinin. EMBO J 5, 41–49.
    [Google Scholar]
  45. Ruigrok, R. W., Hewat, E. A. & Wade, R. H. ( 1992; ). Low pH deforms the influenza virus envelope. J Gen Virol 73, 995–998.[CrossRef]
    [Google Scholar]
  46. Ruigrok, R. W., Barge, A., Durrer, P., Brunner, J., Ma, K. & Whittaker, G. R. ( 2000; ). Membrane interaction of influenza virus M1 protein. Virology 267, 289–298.[CrossRef]
    [Google Scholar]
  47. Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J. & Skehel, J. J. ( 2006; ). The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45–49.[CrossRef]
    [Google Scholar]
  48. Scheiffele, P., Rietveld, A., Wilk, T. & Simons, K. ( 1999; ). Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 274, 2038–2044.[CrossRef]
    [Google Scholar]
  49. Schmitt, A. P. & Lamb, R. A. ( 2005; ). Influenza virus assembly and budding at the viral budozone. Adv Virus Res 64, 383–416.
    [Google Scholar]
  50. Shangguan, T., Siegel, D. P., Lear, J. D., Axelsen, P. H., Alford, D. & Bentz, J. ( 1998; ). Morphological changes and fusogenic activity of influenza virus hemagglutinin. Biophys J 74, 54–62.[CrossRef]
    [Google Scholar]
  51. Shaw, M. L., Stone, K. L., Colangelo, C. M., Gulcicek, E. E. & Palese, P. ( 2008; ). Cellular proteins in influenza virus particles. PLoS Pathog 4, e1000085 [CrossRef]
    [Google Scholar]
  52. Skehel, J. J. & Wiley, D. C. ( 2000; ). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69, 531–569.[CrossRef]
    [Google Scholar]
  53. Takeda, M., Leser, G. P., Russell, C. J. & Lamb, R. A. ( 2003; ). Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci U S A 100, 14610–14617.[CrossRef]
    [Google Scholar]
  54. Varghese, J. N., Laver, W. G. & Colman, P. M. ( 1983; ). Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 303, 35–40.[CrossRef]
    [Google Scholar]
  55. Vie, V., Giocondi, M. C., Lesniewska, E., Finot, E., Goudonnet, J. P. & Le Grimellec, C. ( 2000; ). Tapping-mode atomic force microscopy on intact cells: optimal adjustment of tapping conditions by using the deflection signal. Ultramicroscopy 82, 279–288.[CrossRef]
    [Google Scholar]
  56. White, J., Kartenbeck, J. & Helenius, A. ( 1982; ). Membrane fusion activity of influenza virus. EMBO J 1, 217–222.
    [Google Scholar]
  57. Wilson, I. A., Skehel, J. J. & Wiley, D. C. ( 1981; ). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373.[CrossRef]
    [Google Scholar]
  58. Wrigley, N. G. ( 1979; ). Electron microscopy of influenza virus. Br Med Bull 35, 35–38.
    [Google Scholar]
  59. Wrigley, N., Brown, E. & Skehel, J. ( 1986; ). In electron microscopy of proteins – viral structure. In Viral Structure, pp. 103–164. Edited by J. Harris & R. Home. London: Academic Press.
  60. Yamaguchi, M., Danev, R., Nishiyama, K., Sugawara, K. & Nagayama, K. ( 2008; ). Zernike phase contrast electron microscopy of ice-embedded influenza A virus. J Struct Biol 162, 271–276.[CrossRef]
    [Google Scholar]
  61. Zhong, Q., Inniss, D., Kjoller, K. & Elings, V. ( 1993; ). Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci 290, L688–L692.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.015156-0
Loading
/content/journal/jgv/10.1099/vir.0.015156-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error