1887

Abstract

Crimean–Congo haemorrhagic fever (CCHF) is a lethal disease caused by Crimean–Congo hemorrhagic fever virus (CCHFV). It is one of the most widespread medically significant tick-borne pathogens, with a distribution that coincides well with the geographical occurrence of its tick vector, . Sporadic outbreaks of CCHF have previously been recognized in Asia, Africa, the Middle East and Europe but, in the 21st century, outbreaks have become more frequent in former Yugoslavia, Turkey and Iran. It has been suggested that CCHFV is a migrating pathogen, but it is not clear to what extent. We have, for the first time, analysed the worldwide migration pattern of CCHFV. Our results showed that Turkey may be a donor in Europe, towards both the east and the west, while the United Arab Emirates acted as a donor in the Middle East, and China was found to be the origin for genotype 2. Finally, we showed that migration of CCHFV was unrestricted between Iran and Pakistan. Considering the distribution and coincidence of the tick vector with CCHFV and CCHF, and the fact that the tick vector is present in western Europe, future outbreaks may extend to include hitherto-naïve areas, suggesting that increased surveillance and geographical mapping of this lethal pathogen are needed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014878-0
2010-01-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/1/199.html?itemId=/content/journal/jgv/10.1099/vir.0.014878-0&mimeType=html&fmt=ahah

References

  1. Anagnostou, V. & Papa, A. ( 2009; ). Evolution of Crimean–Congo hemorrhagic fever virus. Infect Genet Evol 9, 948–954.[CrossRef]
    [Google Scholar]
  2. Burt, F. J. & Swanepoel, R. ( 2005; ). Molecular epidemiology of African and Asian Crimean–Congo haemorrhagic fever isolates. Epidemiol Infect 133, 659–666.[CrossRef]
    [Google Scholar]
  3. Burt, F. J., Paweska, J. T., Ashkettle, B. & Swanepoel, R. ( 2009; ). Genetic relationship in southern African Crimean–Congo haemorrhagic fever virus isolates: evidence for occurrence of reassortment. Epidemiol Infect 137, 1302–1308.[CrossRef]
    [Google Scholar]
  4. Chinikar, S., Persson, S. M., Johansson, M., Bladh, L., Goya, M., Houshmand, B., Mirazimi, A., Plyusnin, A., Lundkvist, A. & Nilsson, M. ( 2004; ). Genetic analysis of Crimean–Congo hemorrhagic fever virus in Iran. J Med Virol 73, 404–411.[CrossRef]
    [Google Scholar]
  5. Chumakov, M. P. ( 1947; ). A new virus disease – Crimean hemorrhagic fever. Nov Med 4, 9–11.
    [Google Scholar]
  6. Deyde, V. M., Khristova, M. L., Rollin, P. E., Ksiazek, T. G. & Nichol, S. T. ( 2006; ). Crimean–Congo hemorrhagic fever virus genomics and global diversity. J Virol 80, 8834–8842.[CrossRef]
    [Google Scholar]
  7. Duh, D., Nichol, S. T., Khristova, M. L., Saksida, A., Hafner-Bratkovic, I., Petrovec, M., Dedushaj, I., Ahmeti, S. & Avsic-Zupanc, T. ( 2008; ). The complete genome sequence of a Crimean–Congo hemorrhagic fever virus isolated from an endemic region in Kosovo. Virol J 5, 7 [CrossRef]
    [Google Scholar]
  8. Ergonul, O. ( 2006; ). Crimean–Congo haemorrhagic fever. Lancet Infect Dis 6, 203–214.[CrossRef]
    [Google Scholar]
  9. Ergonul, O. & Whitehouse, C. A. ( 2007; ). Crimean–Congo Hemorrhagic Fever: a Global Perspective. Dordrecht: Springer.
  10. Estrada-Pena, A. ( 2001; ). Forecasting habitat suitability for ticks and prevention of tick-borne diseases. Vet Parasitol 98, 111–132.[CrossRef]
    [Google Scholar]
  11. Estrada-Pena, A. & Santos-Silva, M. M. ( 2005; ). The distribution of ticks (Acari: Ixodidae) of domestic livestock in Portugal. Exp Appl Acarol 36, 233–246.[CrossRef]
    [Google Scholar]
  12. Gubler, D. J., Reiter, P., Ebi, K. L., Yap, W., Nasci, R. & Patz, J. A. ( 2001; ). Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109 (Suppl. 2), 223–233.[CrossRef]
    [Google Scholar]
  13. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  14. Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O. ( 2005; ). phyml online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33, W557–W559.[CrossRef]
    [Google Scholar]
  15. Hewson, R., Chamberlain, J., Mioulet, V., Lloyd, G., Jamil, B., Hasan, R., Gmyl, A., Gmyl, L., Smirnova, S. E. & other authors ( 2004; ). Crimean–Congo haemorrhagic fever virus: sequence analysis of the small RNA segments from a collection of viruses world wide. Virus Res 102, 185–189.[CrossRef]
    [Google Scholar]
  16. Hoogstraal, H. ( 1979; ). The epidemiology of tick-borne Crimean–Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol 15, 307–417.[CrossRef]
    [Google Scholar]
  17. Kampen, H., Poltz, W., Hartelt, K., Wolfel, R. & Faulde, M. ( 2007; ). Detection of a questing Hyalomma marginatum marginatum adult female (Acari, Ixodidae) in southern Germany. Exp Appl Acarol 43, 227–231.[CrossRef]
    [Google Scholar]
  18. Kuhn, J. H., Seregin, S. V., Morzunov, S. P., Petrova, I. D., Vyshemirskii, O. I., Lvov, D. K., Tyunnikov, G. I., Gutorov, V. V., Netesov, S. V. & Petrov, V. S. ( 2004; ). Genetic analysis of the M RNA segment of Crimean–Congo hemorrhagic fever virus strains involved in the recent outbreaks in Russia. Arch Virol 149, 2199–2213.[CrossRef]
    [Google Scholar]
  19. Midilli, K., Gargili, A., Ergonul, O., Sengoz, G., Ozturk, R., Bakar, M. & Jongejan, F. ( 2007; ). Imported Crimean–Congo hemorrhagic fever cases in Istanbul. BMC Infect Dis 7, 54 [CrossRef]
    [Google Scholar]
  20. Nakano, T., Lu, L., Liu, P. & Pybus, O. G. ( 2004; ). Viral gene sequences reveal the variable history of hepatitis C virus infection among countries. J Infect Dis 190, 1098–1108.[CrossRef]
    [Google Scholar]
  21. Ozdarendeli, A., Aydin, K., Tonbak, S., Aktas, M., Altay, K., Koksal, I., Bolat, Y., Dumanli, N. & Kalkan, A. ( 2008; ). Genetic analysis of the M RNA segment of Crimean–Congo hemorrhagic fever virus strains in Turkey. Arch Virol 153, 37–44.[CrossRef]
    [Google Scholar]
  22. Papa, A., Bino, S., Llagami, A., Brahimaj, B., Papadimitriou, E., Pavlidou, V., Velo, E., Cahani, G., Hajdini, M. & other authors ( 2002a; ). Crimean–Congo hemorrhagic fever in Albania, 2001. Eur J Clin Microbiol Infect Dis 21, 603–606.[CrossRef]
    [Google Scholar]
  23. Papa, A., Bozovi, B., Pavlidou, V., Papadimitriou, E., Pelemis, M. & Antoniadis, A. ( 2002b; ). Genetic detection and isolation of Crimean–Congo hemorrhagic fever virus, Kosovo, Yugoslavia. Emerg Infect Dis 8, 852–854.[CrossRef]
    [Google Scholar]
  24. Papa, A., Ma, B., Kouidou, S., Tang, Q., Hang, C. & Antoniadis, A. ( 2002c; ). Genetic characterization of the M RNA segment of Crimean Congo hemorrhagic fever virus strains, China. Emerg Infect Dis 8, 50–53.[CrossRef]
    [Google Scholar]
  25. Papa, A., Christova, I., Papadimitriou, E. & Antoniadis, A. ( 2004; ). Crimean–Congo hemorrhagic fever in Bulgaria. Emerg Infect Dis 10, 1465–1467.[CrossRef]
    [Google Scholar]
  26. Papa, A., Papadimitriou, E., Bozovic, B. & Antoniadis, A. ( 2005; ). Genetic characterization of the M RNA segment of a Balkan Crimean–Congo hemorrhagic fever virus strain. J Med Virol 75, 466–469.[CrossRef]
    [Google Scholar]
  27. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  28. Rodriguez, L. L., Maupin, G. O., Ksiazek, T. G., Rollin, P. E., Khan, A. S., Schwarz, T. F., Lofts, R. S., Smith, J. F., Noor, A. M. & other authors ( 1997; ). Molecular investigation of a multisource outbreak of Crimean–Congo hemorrhagic fever in the United Arab Emirates. Am J Trop Med Hyg 57, 512–518.
    [Google Scholar]
  29. Ruiz-Fons, F., Fernandez-de-Mera, I. G., Acevedo, P., Hofle, U., Vicente, J., de la Fuente, J. & Gortazar, C. ( 2006; ). Ixodid ticks parasitizing Iberian red deer (Cervus elaphus hispanicus) and European wild boar (Sus scrofa) from Spain: geographical and temporal distribution. Vet Parasitol 140, 133–142.[CrossRef]
    [Google Scholar]
  30. Salemi, M., Lamers, S. L., Yu, S., de Oliveira, T., Fitch, W. M. & McGrath, M. S. ( 2005; ). Phylodynamic analysis of human immunodeficiency virus type 1 in distinct brain compartments provides a model for the neuropathogenesis of AIDS. J Virol 79, 11343–11352.[CrossRef]
    [Google Scholar]
  31. Salemi, M., Burkhardt, B. R., Gray, R. R., Ghaffari, G., Sleasman, J. W. & Goodenow, M. M. ( 2007; ). Phylodynamics of HIV-1 in lymphoid and non-lymphoid tissues reveals a central role for the thymus in emergence of CXCR4-using quasispecies. PLoS One 2, e950 [CrossRef]
    [Google Scholar]
  32. Salemi, M., de Oliveira, T., Ciccozzi, M., Rezza, G. & Goodenow, M. M. ( 2008a; ). High-resolution molecular epidemiology and evolutionary history of HIV-1 subtypes in Albania. PLoS One 3, e1390 [CrossRef]
    [Google Scholar]
  33. Salemi, M., Goodenow, M. M., Montieri, S., de Oliveira, T., Santoro, M. M., Beshkov, D., Alexiev, I., Elenkov, I., Yakimova, T. & other authors ( 2008b; ). The HIV type 1 epidemic in Bulgaria involves multiple subtypes and is sustained by continuous viral inflow from West and East European countries. AIDS Res Hum Retroviruses 24, 771–779.[CrossRef]
    [Google Scholar]
  34. Seregin, S. V., Samokhvalov, E. I., Petrova, I. D., Vyshemirskii, O. I., Samokhvalova, E. G., Lvov, D. K., Gutorov, V. V., Tyunnikov, G. I., Shchelkunov, S. N. & other authors ( 2004a; ). Genetic characterization of the M RNA segment of Crimean–Congo hemorrhagic fever virus strains isolated in Russia and Tajikistan. Virus Genes 28, 187–193.[CrossRef]
    [Google Scholar]
  35. Seregin, S. V., Tumanova, I. Y., Vyshemirski, O. I., Petrova, I. D., Lvov, D. K., Gromashevski, V. L., Samokhvalov, E. I., Tiunnikov, G. I., Gutorov, V. V. & other authors ( 2004b; ). Study of the genetic variability of Crimean–Congo hemorrhagic fever virus in Central Asia. Dokl Biochem Biophys 398, 313–315.[CrossRef]
    [Google Scholar]
  36. Seregin, S. V., Tumanova, I., Petrova, I. D., Iashina, L. N., Kuzina, I. I., Vyshemirskii, O. I., Gutorov, V. V., Seregin, S. S., Tiunnikov, G. I. & other authors ( 2006; ). Genomic S segment of Crimean–Congo hemorrhagic fever virus circulating in Russia and Bulgaria. Vopr Virusol 51, 25–32 (in Russian).
    [Google Scholar]
  37. Slatkin, M. & Maddison, W. P. ( 1989; ). A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics 123, 603–613.
    [Google Scholar]
  38. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  39. Tonbak, S., Aktas, M., Altay, K., Azkur, A. K., Kalkan, A., Bolat, Y., Dumanli, N. & Ozdarendeli, A. ( 2006; ). Crimean–Congo hemorrhagic fever virus: genetic analysis and tick survey in Turkey. J Clin Microbiol 44, 4120–4124.[CrossRef]
    [Google Scholar]
  40. Tumanova, I. Iu., Seregin, S. V., Vyshemirskii, O. I., Gutorov, V. V., Petrova, I. D., Tiunnikov, G. I., Ospanov, K. S., Kazakov, S. V., Karimov, S. & other authors ( 2006; ). Genetic monitoring of the Crimean–Congo hemorrhagic fever virus in Kazakhstan and Tajikistan in 2001–2003. Mol Gen Mikrobiol Virusol 2, 36–41.
    [Google Scholar]
  41. Whitehouse, C. A. ( 2004; ). Crimean–Congo hemorrhagic fever. Antiviral Res 64, 145–160.[CrossRef]
    [Google Scholar]
  42. Yashina, L., Petrova, I., Seregin, S., Vyshemirskii, O., Lvov, D., Aristova, V., Kuhn, J., Morzunov, S., Gutorov, V. & other authors ( 2003a; ). Genetic variability of Crimean–Congo haemorrhagic fever virus in Russia and Central Asia. J Gen Virol 84, 1199–1206.[CrossRef]
    [Google Scholar]
  43. Yashina, L., Vyshemirskii, O., Seregin, S., Petrova, I., Samokhvalov, E., Lvov, D., Gutorov, V., Kuzina, I., Tyunnikov, G. & other authors ( 2003b; ). Genetic analysis of Crimean–Congo hemorrhagic fever virus in Russia. J Clin Microbiol 41, 860–862.[CrossRef]
    [Google Scholar]
  44. Yen, Y. C., Kong, L. X., Lee, L., Zhang, Y. Q., Li, F., Cai, B. J. & Gao, S. Y. ( 1985; ). Characteristics of Crimean–Congo hemorrhagic fever virus (Xinjiang strain) in China. Am J Trop Med Hyg 34, 1179–1182.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014878-0
Loading
/content/journal/jgv/10.1099/vir.0.014878-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 199–207

GenBank accession numbers and countries of origin for sequences in the 450 nt S-segment dataset

GenBank accession numbers and countries of origin for sequences in the 220 nt S-segment dataset

[ Single PDF file] (94 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error