1887

Abstract

Feline leukemia virus (FeLV), a common, naturally occurring gammaretrovirus in domestic cats, is associated with degenerative diseases of the haematopoietic system, immunodeficiency and neoplasia. FeLV infection causes an important suppression of neutrophil function, leading to opportunistic infections. Recently, a new microbicidal mechanism named NETosis was described in human, bovine and fish neutrophils, as well as in chicken heterophils. The purpose of the present study was to characterize NETosis in feline neutrophils, as well as to evaluate neutrophil function in FeLV naturally infected symptomatic and asymptomatic cats through the phagocytosis process, release of neutrophil extracellular traps (NETs) and myeloperoxidase (MPO) activity. The results showed that feline neutrophils stimulated with protozoa parasites released structures comprising DNA and histones, which were characterized as NETs by immunofluorescence. Quantification of NETs after neutrophil stimulation showed a significant increase in NET release by neutrophils from FeLV and FeLV asymptomatic cats compared with FeLV symptomatic cats. Moreover, the number of released NETs and MPO activity in unstimulated neutrophils of FeLV symptomatic cats were higher than those in unstimulated neutrophils from FeLV and FeLV asymptomatic cats. This study reports, for the first time, NET release by feline neutrophils, along with the fact that NET induction may be modulated by a viral infection. The results indicate that the NET mechanism appears to be overactivated in FeLV cats and that this feature could be considered a marker of disease progression in FeLV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014613-0
2010-01-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/1/259.html?itemId=/content/journal/jgv/10.1099/vir.0.014613-0&mimeType=html&fmt=ahah

References

  1. Bobade, P. A. & Nash, A. S. ( 1987; ). A comparative study of the efficiency of acridine orange and some Romanowsky staining procedures in the demonstration of Haemobartonella felis in feline blood. Vet Parasitol 26, 169–172.[CrossRef]
    [Google Scholar]
  2. Boujon, C. E., Schärer, V. & Bestetti, G. E. ( 1991; ). Haemobartonella detection in cat blood smears. Schweiz Arch Tierheilkd 133, 135–136.
    [Google Scholar]
  3. Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y. & Zychlinsky, A. ( 2004; ). Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535.[CrossRef]
    [Google Scholar]
  4. Chuammitri, P., Ostojić, J., Andreasen, C. B., Redmond, S. B., Lamon, S. J. & Palić, D. ( 2009; ). Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet Immunol Immunopathol 129, 126–131.[CrossRef]
    [Google Scholar]
  5. Cockerell, G. L. & Hoover, E. A. ( 1977; ). Inhibition of normal lymphocyte mitogenic reactivity by serum from feline leukemia virus-infected cats. Cancer Res 37, 3985–3989.
    [Google Scholar]
  6. Dezzutti, C. S., Wright, K. A., Lewis, M. G., Lafrado, L. J. & Olsen, R. G. ( 1989; ). FeLV-induced immunosuppression through alterations in signal transduction: down regulation of protein kinase C. Vet Immunol Immunopathol 21, 55–67.[CrossRef]
    [Google Scholar]
  7. Dezzutti, C. S., Lafrado, L. J., Lewis, M. G. & Olsen, R. G. ( 1990; ). Inhibition of phorbol ester-induced neutrophil chemiluminescence by FeLV. Arch Virol 111, 75–85.[CrossRef]
    [Google Scholar]
  8. Dunham, S. P. & Graham, E. ( 2008; ). Retroviral infections of small animals. Vet Clin North Am Small Anim Pract 38, 879–901.[CrossRef]
    [Google Scholar]
  9. Fuchs, T. A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., Weinrauch, Y., Brinkmann, V. & Zychlinsky, A. ( 2007; ). Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176, 231–241.[CrossRef]
    [Google Scholar]
  10. Guerreiro, J. B., Porto, M. A., Santos, S. B., Lacerda, L., Ho, J. L. & Carvalho, E. M. ( 2005; ). Spontaneous neutrophil activation in HTLV-1 infected patients. Braz J Infect Dis 9, 510–514.[CrossRef]
    [Google Scholar]
  11. Guimarães-Costa, A. B., Nascimento, M. T. C., Fromment, G. S., Soares, R. P. P., Morgado, F., Conceição-Silva, F. & Saraiva, E. M. ( 2009; ). Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 106, 6748–6753.[CrossRef]
    [Google Scholar]
  12. Hardy, W. D., Jr ( 1982; ). Immunopathology induced by the feline leukemia virus. Springer Semin Immunopathol 5, 75–106.
    [Google Scholar]
  13. Hoffmann-Jagielska, M., Winncka, A., Jagielski, D., Micun, J., Zmudzka, M. & Lechowski, R. ( 2005; ). Influence of naturally acquired feline leukemia virus (FeLV) infection on the phagocytic and respiratory burst activity of neutrophils and monocytes of peripheral blood. Pol J Vet Sci 8, 93–97.
    [Google Scholar]
  14. Hoover, E. A. & Mullins, J. I. ( 1991; ). Feline leukemia virus infection and disease. J Am Vet Med Assoc 199, 1287–1297.
    [Google Scholar]
  15. Kiehl, A. R., Fettman, M. J., Quackenbush, S. L. & Hoover, E. A. ( 1987; ). Effects of feline leukemia virus infection on neutrophil chemotaxis in vitro. Am J Vet Res 48, 76–80.
    [Google Scholar]
  16. Lafrado, L. J. & Olsen, R. G. ( 1986; ). Demonstration of depressed polymorphonuclear leukocyte function in nonviremic FeLV-infected cats. Cancer Invest 4, 297–300.[CrossRef]
    [Google Scholar]
  17. Lafrado, L. J., Lewis, M., Mathes, L. E. & Olsen, R. G. ( 1987; ). Suppression of in vitro neutrophil function by feline leukaemia virus (FeLV) and purified FeLV-p15E. J Gen Virol 68, 507–513.[CrossRef]
    [Google Scholar]
  18. Leutenegger, C. M., Hofmann-Lehmann, R., Riols, C., Liberek, M., Worel, G., Lups, P., Fehr, D., Hartmann, M., Weilenmann, P. & Lutz, H. ( 1999; ). Viral infections in free-living populations of the European wildcat. J Wildl Dis 35, 678–686.[CrossRef]
    [Google Scholar]
  19. Lewis, M. G., Duska, G. O., Stiff, M. I., Lafrado, L. J. & Olsen, R. G. ( 1986; ). Polymorphonuclear leukocyte dysfunction associated with feline leukaemia virus infection. J Gen Virol 67, 2113–2118.[CrossRef]
    [Google Scholar]
  20. Lippolis, J. D., Reinhardt, T. A., Goff, J. P. & Horst, R. L. ( 2006; ). Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk. Vet Immunol Immunopathol 113, 248–255.[CrossRef]
    [Google Scholar]
  21. Lögters, T., Paunel-Görgülü, A., Zilkens, C., Altrichter, J., Scholz, M., Thelen, S., Krauspe, R., Margraf, S., Jeri, T. & other authors ( 2009; ). Diagnostic accuracy of neutrophil-derived circulating free DNA (cf-DNA/NETs) for septic arthritis. J Orthop Res 27, 1401–407.[CrossRef]
    [Google Scholar]
  22. Loria, V., Dato, I., Graziani, F. & Biasucci, L. M. ( 2008; ). Myeloperoxidase: a new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediators Inflamm 2008, 135625
    [Google Scholar]
  23. Margraf, S., Lögters, T., Reipen, J., Altrichter, J., Scholz, M. & Windolf, J. ( 2008; ). Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis. Shock 30, 352–358.[CrossRef]
    [Google Scholar]
  24. Miyazawa, T. ( 2002; ). Infections of feline leukemia virus and feline immunodeficiency virus. Front Biosci 7, d504–d518.[CrossRef]
    [Google Scholar]
  25. Nathan, C. ( 2006; ). Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6, 173–182.[CrossRef]
    [Google Scholar]
  26. Onions, D. ( 1985; ). Animal models: lessons from feline and bovine leukaemia virus infections. Leuk Res 9, 709–711.[CrossRef]
    [Google Scholar]
  27. Palić, D., Ostojic, J., Andreasenc, C. B. & Roth, J. A. ( 2007; ). Fish cast NETs: neutrophil extracellular traps are released from fish neutrophils. Dev Comp Immunol 31, 805–816.[CrossRef]
    [Google Scholar]
  28. Rojko, J. L. & Kociba, G. J. ( 1991; ). Pathogenesis of infection by the feline leukemia virus. J Am Vet Med Assoc 199, 1305–1308.
    [Google Scholar]
  29. Salmen, S., Montes, H., Soyano, A., Hernández, D. & Berrueta, L. ( 2007; ). Mechanisms of neutrophil death in human immunodeficiency virus-infected patients: role of reactive oxygen species, caspases and MAP kinase pathways. Clin Exp Immunol 150, 539–545.[CrossRef]
    [Google Scholar]
  30. Tompkins, M. B., Olgivie, G. K., Gast, A. M., Franklin, R., Weigel, R. & Tompkins, W. A. ( 1989; ). Interleukin-2 suppression in cats naturally infected with feline leukemia virus. J Biol Response Mod 8, 86–96.
    [Google Scholar]
  31. Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. ( 2006; ). Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8, 668–676.[CrossRef]
    [Google Scholar]
  32. Van Strijp, J. A., Russell, D. G., Tuomanen, E., Brown, E. J. & Wright, S. D. ( 1993; ). Ligand specificity of purified complement receptor type three (CD11b/CD18, αMβ2, Mac-1). Indirect effects of an Arg-Gly-Asp (RGD) sequence. J Immunol 151, 3324–3336.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014613-0
Loading
/content/journal/jgv/10.1099/vir.0.014613-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error