1887

Abstract

Oxidative stress has been implicated in various human diseases, including the pathogenesis of hepatitis C virus (HCV). Previous studies have shown the induction of oxidative stress in cultured cells expressing HCV genes. The transcription factor Nrf2 is known to be activated in response to oxidative stress, but the mechanism of its activation is not clearly understood. In this study, we first determined the induction of Nrf2 and then investigated the mechanism of Nrf2 activation in human hepatoma cells infected with HCV (JFH-1). Our results showed the induction and nuclear translocation of Nrf2 in a time-dependent manner. The HCV-mediated activation of Nrf2 was abrogated in the presence of an antioxidant, PDTC (pyrrolidine dithiocarbamate), and a Ca chelator, BAPTA-AM [1,2-bis(aminophenoxy)ethane N,N,N,N-tetraacetic acid tetra(acetoxymethyl) ester], which suggests a role for both reactive oxygen species and Ca signalling in the Nrf2-activation process. By using inhibitors of cellular kinases, we showed further that HCV-mediated phosphorylation/activation of Nrf2 is mediated by the mitogen-activated protein (MAP) kinases p38 MAPK and janus kinase. We also observed enhanced phosphorylation of Akt and its downstream substrate Bad in HCV-infected cells. Furthermore, by using a small interfering RNA approach, our results suggest a potential role for HCV-mediated Nrf2 activation in the survival of HCV-infected cells, a condition favourable for liver oncogenesis. Taken together, these results provide an insight into the mechanisms by which HCV induces intracellular events relevant to chronic HCV infection.

Erratum
This article contains a correction applying to the following content:
Expression of concern: Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014340-0
2010-03-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/3/681.html?itemId=/content/journal/jgv/10.1099/vir.0.014340-0&mimeType=html&fmt=ahah

References

  1. Bartenschlager, R. & Lohmann, V. ( 2000; ). Replication of hepatitis C virus. J Gen Virol 81, 1631–1648.
    [Google Scholar]
  2. Bureau, C., Bernad, J., Chaouche, N., Orfila, C., Beraud, M., Gonindard, C., Alric, L., Vinel, J. P. & Pipy, B. ( 2001; ). Nonstructural 3 protein of hepatitis C virus triggers an oxidative burst in human monocytes via activation of NADPH oxidase. J Biol Chem 276, 23077–23083.[CrossRef]
    [Google Scholar]
  3. Cullinan, S. B. & Diehl, J. A. ( 2004; ). PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279, 20108–20117.[CrossRef]
    [Google Scholar]
  4. Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J. & Diehl, J. A. ( 2003; ). Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23, 7198–7209.[CrossRef]
    [Google Scholar]
  5. Di Bisceglie, A. M. ( 1997; ). Hepatitis C and hepatocellular carcinoma. Hepatology 26, 34S–38S.[CrossRef]
    [Google Scholar]
  6. Dubuisson, J., Penin, F. & Moradpour, D. ( 2002; ). Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol 12, 517–523.[CrossRef]
    [Google Scholar]
  7. Gong, G., Waris, G., Tanveer, R. & Siddiqui, A. ( 2001; ). Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB. Proc Natl Acad Sci U S A 98, 9599–9604.[CrossRef]
    [Google Scholar]
  8. He, C. H., Gong, P., Hu, G., Stewart, D., Choi, M. E., Choi, A. M. & Alam, J. ( 2001; ). Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein: implication for heme oxygenase-1 gene regulation. J Biol Chem 276, 20858–20865.[CrossRef]
    [Google Scholar]
  9. Huang, H. C., Nguyen, T. & Pickett, C. B. ( 2002; ). Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277, 42769–42774.[CrossRef]
    [Google Scholar]
  10. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., O'Conner, T. & Yamamoto, M. ( 2003; ). Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8, 379–391.[CrossRef]
    [Google Scholar]
  11. Jeyapaul, J. & Jaiswal, A. K. ( 2000; ). Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of γ-glutamylcysteine synthase heavy subunit gene. Biochem Pharmacol 59, 1433–1439.[CrossRef]
    [Google Scholar]
  12. Jiang, Y., Scofield, V. L., Yan, M., Qiang, W., Liu, N., Reid, A. J., Lynn, W. S. & Wong, P. K. Y. ( 2006; ). Retrovirus-induced oxidative stress with neuroimmunodegeneration is suppressed by antioxidant treatment with a refined monosodium α-luminol (galavit). J Virol 80, 4557–4569.[CrossRef]
    [Google Scholar]
  13. Kang, K. W., Cho, M. K., Lee, C. H. & Kim, S. G. ( 2001; ). Activation of phosphatidylinositol 3-kinase and Akt by tert-butylhydroquinone is responsible for antioxidant response element-mediated rGSTA2 induction in H4IIE cells. Mol Pharmacol 59, 1147–1156.
    [Google Scholar]
  14. Kasprzak, A. & Adamek, A. ( 2008; ). Role of hepatitis C virus proteins (C, NS3, NS5A) in hepatic oncogenesis. Hepatol Res 38, 1–26.[CrossRef]
    [Google Scholar]
  15. Kobayashi, M., Itoh, K., Suzuki, T., Osanai, H., Nishikawa, K., Katoh, I., Takagi, Y. & Yamamoto, M. ( 2002; ). Identification of the interactive interface and phylogenic conservation of the Nrf2–Keap1 system. Genes Cells 7, 807–820.[CrossRef]
    [Google Scholar]
  16. Lindenbach, B. D., Evans, M. J., Syder, A. J., Wolk, B., Tellinghuisen, T. L., Liu, C. C., Maruyama, T., Hynes, R. O., Burton, D. R. & other authors ( 2005; ). Complete replication of hepatitis C virus in cell culture. Science 309, 623–626.[CrossRef]
    [Google Scholar]
  17. Machida, K., Cheng, K. T., Lai, C. K., Jeng, K. S., Sung, V. M. & Lai, M. M. ( 2006; ). Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT-3 activation. J Virol 80, 7199–7207.[CrossRef]
    [Google Scholar]
  18. Motohashi, H. & Yamamoto, M. ( 2004; ). Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10, 549–557.[CrossRef]
    [Google Scholar]
  19. Motohashi, H., Katsuoka, F., Engel, J. D. & Yamamoto, M. ( 2004; ). Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1–Nrf2 regulatory pathway. Proc Natl Acad Sci U S A 101, 6379–6384.[CrossRef]
    [Google Scholar]
  20. Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. & Pickett, C. B. ( 2003; ). Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. J Biol Chem 278, 4536–4541.[CrossRef]
    [Google Scholar]
  21. Ohta, T., Iijima, K., Miyamoto, M., Nakahara, I., Tanaka, H., Ohtsuji, M., Suzuki, T., Kobayashi, A., Yokota, J. & other authors ( 2008; ). Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68, 1303–1309.[CrossRef]
    [Google Scholar]
  22. Okuda, M., Li, K., Beard, M. R., Showalter, L. A., Scholle, F., Lemon, S. M. & Wienman, S. A. ( 2002; ). Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122, 366–375.[CrossRef]
    [Google Scholar]
  23. Padmanabhan, B., Tong, K. I., Ohta, T., Nakamura, Y., Scharlock, M., Ohtsuji, M., Kang, M. I., Kobayashi, A., Yokoyama, S. & Yamamoto, M. ( 2006; ). Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21, 689–700.[CrossRef]
    [Google Scholar]
  24. Qiang, W., Cahill, J. M., Liu, J., Kuang, X., Liu, N., Scofield, V. L., Voorhees, J. R., Reid, A. J., Yan, M. & other authors ( 2004; ). Activation of transcription factor Nrf2 and its downstream targets in response to moloney murine leukemia virus ts1-induced thiol depletion and oxidative stress in astrocytes. J Virol 78, 11926–11938.[CrossRef]
    [Google Scholar]
  25. Rushmore, T. H., Morton, M. R. & Pickett, C. B. ( 1991; ). The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266, 11632–11639.
    [Google Scholar]
  26. Shi, S. T., Lee, K. J., Aizaki, H., Hwang, S. B. & Lai, M. M. C. ( 2003; ). Hepatitis C virus RNA replication occurs on a detergent resistant membrane that cofractionates with caveolin-2. J Virol 77, 4160–4168.[CrossRef]
    [Google Scholar]
  27. Tardif, K. D., Mori, K. & Siddiqui, A. ( 2002; ). Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J Virol 76, 7453–7459.[CrossRef]
    [Google Scholar]
  28. Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., Murthy, K., Habermann, A., Krausslich, H. G. & other authors ( 2005; ). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11, 791–796.[CrossRef]
    [Google Scholar]
  29. Waris, G. & Siddiqui, A. ( 2005; ). Hepatitis C virus stimulates the expression of cyclooxygenase-2 via oxidative stress: role of prostaglandin E2 in RNA replication. J Virol 79, 9725–9734.[CrossRef]
    [Google Scholar]
  30. Waris, G., Sarker, S. & Siddiqui, A. ( 2004; ). Two-step affinity purification of the hepatitis C virus ribonucleoprotein complex. RNA 10, 321–329.[CrossRef]
    [Google Scholar]
  31. Waris, G., Turkson, J., Hassanein, T. & Siddiqui, A. ( 2005; ). Hepatitis C virus constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. J Virol 79, 1569–1580.[CrossRef]
    [Google Scholar]
  32. Waris, G., Felmlee, D. J., Negro, F. & Siddiqui, A. ( 2007; ). Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates phosphorylation of SREBPs via oxidative stress. J Virol 81, 8122–8130.[CrossRef]
    [Google Scholar]
  33. Yu, R., Chen, C., Mo, Y. Y., Hebbar, V., Owuor, E. D., Tan, T. H. & Kong, A. N. ( 2000; ). Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J Biol Chem 275, 39907–39913.[CrossRef]
    [Google Scholar]
  34. Zhong, J., Gastaminza, P., Cheng, G., Kapadia, S., Kato, T., Burton, D. R., Wieland, S. F., Uprichard, S. L., Wakita, T. & Chisari, F. V. ( 2005; ). Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102, 9294–9299.[CrossRef]
    [Google Scholar]
  35. Zipper, L. M. & Mulcahy, R. T. ( 2000; ). Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. Biochem Biophys Res Commun 278, 484–492.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014340-0
Loading
/content/journal/jgv/10.1099/vir.0.014340-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error