1887

Abstract

The rat coronavirus sialodacryoadenitis virus (SDAV) causes respiratory infection and provides a system for investigating respiratory coronaviruses in a natural host. A viral suspension in the form of a microspray aerosol was delivered by intratracheal instillation into the distal lung of 6–8-week-old Fischer 344 rats. SDAV inoculation produced a 7 % body weight loss over a 5 day period that was followed by recovery over the next 7 days. SDAV caused focal lesions in the lung, which were most severe on day 4 post-inoculation (p.i.). Immunofluorescent staining showed that four cell types supported SDAV virus replication in the lower respiratory tract, namely Clara cells, ciliated cells in the bronchial airway and alveolar type I and type II cells in the lung parenchyma. In bronchial alveolar lavage fluid (BALF) a neutrophil influx increased the population of neutrophils to 45 % compared with 6 % of the cells in control samples on day 2 after mock inoculation. Virus infection induced an increase in surfactant protein SP-D levels in BALF of infected rats on days 4 and 8 p.i. that subsided by day 12. The concentrations of chemokines MCP-1, LIX and CINC-1 in BALF increased on day 4 p.i., but returned to control levels by day 8. Intratracheal instillation of rats with SDAV coronavirus caused an acute, self-limited infection that is a useful model for studying the early events of the innate immune response to respiratory coronavirus infections in lungs of the natural virus host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014282-0
2009-12-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/12/2956.html?itemId=/content/journal/jgv/10.1099/vir.0.014282-0&mimeType=html&fmt=ahah

References

  1. Alcorn, J. L., Stark, J. M., Chiappetta, C. L., Jenkins, G. & Colasurdo, G. N. ( 2005; ). Effects of RSV infection on pulmonary surfactant protein SP-A in cultured human type II cells: contrasting consequences on SP-A mRNA and protein. Am J Physiol Lung Cell Mol Physiol 289, L1113–L1122.[CrossRef]
    [Google Scholar]
  2. Bhatt, P. N., Percy, D. H. & Jonas, A. M. ( 1972; ). Characterization of the virus of sialodacryoadenitis of rats: a member of the coronavirus group. J Infect Dis 126, 123–130.[CrossRef]
    [Google Scholar]
  3. Crouch, E. C. ( 2000; ). Surfactant protein-D and pulmonary host defense. Respir Res 1, 93–108.[CrossRef]
    [Google Scholar]
  4. De Albuquerque, N., Baig, E., Ma, X., Zhang, J., He, W., Rowe, A., Habal, M., Liu, M., Shalev, I. & other authors ( 2006; ). Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice. J Virol 80, 10382–10394.[CrossRef]
    [Google Scholar]
  5. Doss, M., White, M. R., Tecle, T., Gantz, D., Crouch, E. C., Jung, G., Ruchala, P., Waring, A. J., Lehrer, R. I. & Hartshorn, K. L. ( 2009; ). Interactions of alpha-, beta-, and theta-defensins with influenza A virus and surfactant protein D. J Immunol 182, 7878–7887.[CrossRef]
    [Google Scholar]
  6. Fouchier, R. A., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G. J., van den Hoogen, B. G., Peiris, M., Lim, W., Stohr, K. & Osterhaus, A. D. ( 2003; ). Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423, 240 [CrossRef]
    [Google Scholar]
  7. Franks, T. J., Chong, P. Y., Chui, P., Galvin, J. R., Lourens, R. M., Reid, A. H., Selbs, E., McEvoy, C. P., Hayden, C. D. & other authors ( 2003; ). Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum Pathol 34, 743–748.[CrossRef]
    [Google Scholar]
  8. Gagneten, S., Scanga, C. A., Dveksler, G. S., Beauchemin, N., Percy, D. & Holmes, K. V. ( 1996; ). Attachment glycoproteins and receptor specificity of rat coronaviruses. Lab Anim Sci 46, 159–166.
    [Google Scholar]
  9. Gerna, G., Campanini, G., Rovida, F., Percivalle, E., Sarasini, A., Marchi, A. & Baldanti, F. ( 2006; ). Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients. J Med Virol 78, 938–949.[CrossRef]
    [Google Scholar]
  10. Gerna, G., Percivalle, E., Sarasini, A., Campanini, G., Piralla, A., Rovida, F., Genini, E., Marchi, A. & Baldanti, F. ( 2007; ). Human respiratory coronavirus HKU1 versus other coronavirus infections in Italian hospitalised patients. J Clin Virol 38, 244–250.[CrossRef]
    [Google Scholar]
  11. Grubor, B., Gallup, J. M., Meyerholz, D. K., Crouch, E. C., Evans, R. B., Brogden, K. A., Lehmkuhl, H. D. & Ackermann, M. R. ( 2004; ). Enhanced surfactant protein and defensin mRNA levels and reduced viral replication during parainfluenza virus type 3 pneumonia in neonatal lambs. Clin Diagn Lab Immunol 11, 599–607.
    [Google Scholar]
  12. Haagsman, H. P. ( 1998; ). Interactions of surfactant protein A with pathogens. Biochim Biophys Acta 1408, 264–277.[CrossRef]
    [Google Scholar]
  13. Haagsman, H. P., Hogenkamp, A., van Eijk, M. & Veldhuizen, E. J. ( 2008; ). Surfactant collectins and innate immunity. Neonatology 93, 288–294.[CrossRef]
    [Google Scholar]
  14. Halbower, A. C., Mason, R. J., Abman, S. H. & Tuder, R. M. ( 1994; ). Agarose infiltration improves morphology of cryostat sections of lung. Lab Invest 71, 149–153.
    [Google Scholar]
  15. Huang, K. J., Su, I. J., Theron, M., Wu, Y. C., Lai, S. K., Liu, C. C. & Lei, H. Y. ( 2005; ). An interferon-gamma-related cytokine storm in SARS patients. J Med Virol 75, 185–194.[CrossRef]
    [Google Scholar]
  16. Johnston, S. L. ( 2005; ). Overview of virus-induced airway disease. Proc Am Thorac Soc 2, 150–156.[CrossRef]
    [Google Scholar]
  17. Kahn, J. S. & McIntosh, K. ( 2005; ). History and recent advances in coronavirus discovery. Pediatr Infect Dis J 24, S223–S227.[CrossRef]
    [Google Scholar]
  18. Kahn, J. S. ( 2006; ). The widening scope of coronaviruses. Curr Opin Pediatr 18, 42–47.
    [Google Scholar]
  19. Kesson, A. M. ( 2007; ). Respiratory virus infections. Paediatr Respir Rev 8, 240–248.[CrossRef]
    [Google Scholar]
  20. Khanolkar, A., Hartwig, S. M., Haag, B. A., Meyerholz, D. K., Harty, J. T. & Varga, S. M. ( 2009; ). Toll-like receptor 4 deficiency increases disease and mortality after mouse hepatitis virus type 1 infection of susceptible C3H mice. J Virol 83, 8946–8956.[CrossRef]
    [Google Scholar]
  21. Leth-Larsen, R., Zhong, F., Chow, V. T., Holmskov, U. & Lu, J. ( 2007; ). The SARS coronavirus spike glycoprotein is selectively recognized by lung surfactant protein D and activates macrophages. Immunobiology 212, 201–211.[CrossRef]
    [Google Scholar]
  22. Ling, T. Y., Kuo, M. D., Li, C. L., Yu, A. L., Huang, Y. H., Wu, T. J., Lin, Y. C., Chen, S. H. & Yu, J. ( 2006; ). Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proc Natl Acad Sci U S A 103, 9530–9535.[CrossRef]
    [Google Scholar]
  23. Mason, R. J. ( 2006; ). Biology of alveolar type II cells. Respirology 11 (Suppl.), S12–S15.[CrossRef]
    [Google Scholar]
  24. Mason, R. J., Lewis, M. C., Edeen, K. E., McCormick-Shannon, K., Nielsen, L. D. & Shannon, J. M. ( 2002; ). Maintenance of surfactant protein A and D secretion by rat alveolar type II cells in vitro. Am J Physiol Lung Cell Mol Physiol 282, L249–L258.[CrossRef]
    [Google Scholar]
  25. Miura, T. A., Wang, J., Mason, R. J. & Holmes, K. V. ( 2006; ). Rat coronavirus infection of primary rat alveolar epithelial cells. Adv Exp Med Biol 581, 351–356.
    [Google Scholar]
  26. Miura, T. A., Wang, J., Holmes, K. V. & Mason, R. J. ( 2007; ). Rat coronaviruses infect rat alveolar type I epithelial cells and induce expression of CXC chemokines. Virology 369, 288–298.[CrossRef]
    [Google Scholar]
  27. Mossel, E. C., Wang, J., Jeffers, S., Edeen, K. E., Wang, S., Cosgrove, G. P., Funk, C. J., Manzer, R., Miura, T. A. & other authors ( 2008; ). SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology 372, 127–135.[CrossRef]
    [Google Scholar]
  28. Muller, P. Y., Janovjak, H., Miserez, A. R. & Dobbie, Z. ( 2002; ). Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32, 1372–1379.
    [Google Scholar]
  29. Nagata, N., Iwata, N., Hasegawa, H., Fukushi, S., Yokoyama, M., Harashima, A., Sato, Y., Saijo, M., Morikawa, S. & Sata, T. ( 2007; ). Participation of both host and virus factors in induction of severe acute respiratory syndrome (SARS) in F344 rats infected with SARS coronavirus. J Virol 81, 1848–1857.[CrossRef]
    [Google Scholar]
  30. Nicholls, J. M., Poon, L. L., Lee, K. C., Ng, W. F., Lai, S. T., Leung, C. Y., Chu, C. M., Hui, P. K., Mak, K. L. & other authors ( 2003; ). Lung pathology of fatal severe acute respiratory syndrome. Lancet 361, 1773–1778.[CrossRef]
    [Google Scholar]
  31. Nicholls, J. M., Butany, J., Poon, L. L., Chan, K. H., Beh, S. L., Poutanen, S., Peiris, J. S. & Wong, M. ( 2006; ). Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS. PLoS Med 3, e27 [CrossRef]
    [Google Scholar]
  32. Nichols, W. G., Peck Campbell, A. J. & Boeckh, M. ( 2008; ). Respiratory viruses other than influenza virus: impact and therapeutic advances. Clin Microbiol Rev 21, 274–290.[CrossRef]
    [Google Scholar]
  33. Parker, J. C., Cross, S. S. & Rowe, W. P. ( 1970; ). Rat coronavirus (RCV): a prevalent, naturally occurring pneumotropic virus of rats. Arch Gesamte Virusforsch 31, 293–302.[CrossRef]
    [Google Scholar]
  34. Pastva, A. M., Wright, J. R. & Williams, K. L. ( 2007; ). Immunomodulatory roles of surfactant proteins A and D: implications in lung disease. Proc Am Thorac Soc 4, 252–257.[CrossRef]
    [Google Scholar]
  35. Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W. & other authors ( 2003; ). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325.[CrossRef]
    [Google Scholar]
  36. Percy, D. H., Williams, K. L. & Paturzo, F. X. ( 1991; ). A comparison of the sensitivity and specificity of sialodacryoadenitis virus, Parker's rat coronavirus, and mouse hepatitis virus-infected cells as a source of antigen for the detection of antibody to rat coronaviruses. Arch Virol 119, 175–180.[CrossRef]
    [Google Scholar]
  37. Rancourt, R. C., Lee, R. L., O'Neill, H., Accurso, F. J. & White, C. W. ( 2007; ). Reduced thioredoxin increases proinflammatory cytokines and neutrophil influx in rat airways: modulation by airway mucus. Free Radic Biol Med 42, 1441–1453.[CrossRef]
    [Google Scholar]
  38. Reading, P. C., Morey, L. S., Crouch, E. C. & Anders, E. M. ( 1997; ). Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice. J Virol 71, 8204–8212.
    [Google Scholar]
  39. Roberts, A., Deming, D., Paddock, C. D., Cheng, A., Yount, B., Vogel, L., Herman, B. D., Sheahan, T., Heise, M. & other authors ( 2007; ). A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog 3, e5 [CrossRef]
    [Google Scholar]
  40. Shieh, W. J., Hsiao, C. H., Paddock, C. D., Guarner, J., Goldsmith, C. S., Tatti, K., Packard, M., Mueller, L., Wu, M. Z. & other authors ( 2005; ). Immunohistochemical, in situ hybridization, and ultrastructural localization of SARS-associated coronavirus in lung of a fatal case of severe acute respiratory syndrome in Taiwan. Hum Pathol 36, 303–309.[CrossRef]
    [Google Scholar]
  41. Sims, A. C., Baric, R. S., Yount, B., Burkett, S. E., Collins, P. L. & Pickles, R. J. ( 2005; ). Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs. J Virol 79, 15511–15524.[CrossRef]
    [Google Scholar]
  42. Subbarao, K. & Roberts, A. ( 2006; ). Is there an ideal animal model for SARS? Trends Microbiol 14, 299–303.[CrossRef]
    [Google Scholar]
  43. To, K. F., Tong, J. H., Chan, P. K., Au, F. W., Chim, S. S., Chan, K. C., Cheung, J. L., Liu, E. Y., Tse, G. M. & other authors ( 2004; ). Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. J Pathol 202, 157–163.[CrossRef]
    [Google Scholar]
  44. Vabret, A., Dina, J., Gouarin, S., Petitjean, J., Tripey, V., Brouard, J. & Freymuth, F. ( 2008; ). Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France. J Paediatr Child Health 44, 176–181.[CrossRef]
    [Google Scholar]
  45. van den Brand, J. M., Haagmans, B. L., Leijten, L., van Riel, D., Martina, B. E., Osterhaus, A. D. & Kuiken, T. ( 2008; ). Pathology of experimental SARS coronavirus infection in cats and ferrets. Vet Pathol 45, 551–562.[CrossRef]
    [Google Scholar]
  46. van der Hoek, L., Pyrc, K., Jebbink, M. F., Vermeulen-Oost, W., Berkhout, R. J., Wolthers, K. C., Wertheim-van Dillen, P. M., Kaandorp, J., Spaargaren, J. & Berkhout, B. ( 2004; ). Identification of a new human coronavirus. Nat Med 10, 368–373.[CrossRef]
    [Google Scholar]
  47. Wang, J., Oberley-Deegan, R., Wang, S., Nikrad, M., Funk, C. J., Hartshorn, K. L. & Mason, R. J. ( 2009; ). Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-λ1) in response to influenza A infection. J Immunol 182, 1296–1304.[CrossRef]
    [Google Scholar]
  48. Weiss, S. R. & Navas-Martin, S. ( 2005; ). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev 69, 635–664.[CrossRef]
    [Google Scholar]
  49. WHO ( 2004; ). The World Health Report 2004: Changing History. World Health Organization.
  50. Wojcinski, Z. W. & Percy, D. H. ( 1986; ). Sialodacryoadenitis virus-associated lesions in the lower respiratory tract of rats. Vet Pathol 23, 278–286.
    [Google Scholar]
  51. Wong, C. K., Lam, C. W., Wu, A. K., Ip, W. K., Lee, N. L., Chan, I. H., Lit, L. C., Hui, D. S., Chan, M. H. & other authors ( 2004; ). Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 136, 95–103.[CrossRef]
    [Google Scholar]
  52. Woo, P. C., Lau, S. K., Chu, C. M., Chan, K. H., Tsoi, H. W., Huang, Y., Wong, B. H., Poon, R. W., Cai, J. J. & other authors ( 2005; ). Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79, 884–895.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014282-0
Loading
/content/journal/jgv/10.1099/vir.0.014282-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2956 - 2964

Viral titres in homogenized rat lung.

Control rat lung sections stained for airway and epithelial cell markers.

Change in alveolar wall thickness during SDAV infection.

[Single PDF](131 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error