1887

Abstract

Antibody is an important antiviral defence. However, it is considered to do little against human gamma-herpesviruses, which establish predominantly latent infections regulated by T cells. One limitation on analysing these infections has been that latency is already well-established at clinical presentation; early infection may still be accessible to antibody. Here, using murid herpesvirus-4 (MuHV-4), we tested the impact of adoptively transferred antibody on early gamma-herpesvirus infection. Immune sera and neutralizing and non-neutralizing monoclonal antibodies (mAbs) all reduced acute lytic MuHV-4 replication. The reductions, even by neutralizing mAbs, were largely or completely dependent on host IgG Fc receptors. Therefore, passive antibody can blunt acute gamma-herpesvirus lytic infection, and does this principally by IgG Fc-dependent functions rather than by neutralization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014266-0
2009-11-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/11/2592.html?itemId=/content/journal/jgv/10.1099/vir.0.014266-0&mimeType=html&fmt=ahah

References

  1. Adler, H., Messerle, M., Wagner, M. & Koszinowski, U. H. ( 2000; ). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74, 6964–6974.[CrossRef]
    [Google Scholar]
  2. Balachandran, N., Bacchetti, S. & Rawls, W. E. ( 1982; ). Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect Immun 37, 1132–1137.
    [Google Scholar]
  3. Beisel, C., Tanner, J., Matsuo, T., Thorley-Lawson, D., Kezdy, F. & Kieff, E. ( 1985; ). Two major outer envelope glycoproteins of Epstein–Barr virus are encoded by the same gene. J Virol 54, 665–674.
    [Google Scholar]
  4. Callan, M. F., Steven, N., Krausa, P., Wilson, J. D., Moss, P. A., Gillespie, G. M., Bell, J. I., Rickinson, A. B. & McMichael, A. J. ( 1996; ). Large clonal expansions of CD8+ T cells in acute infectious mononucleosis. Nat Med 2, 906–911.[CrossRef]
    [Google Scholar]
  5. Carneiro-Sampaio, M. & Coutinho, A. ( 2007; ). Immunity to microbes: lessons from primary immunodeficiencies. Infect Immun 75, 1545–1555.[CrossRef]
    [Google Scholar]
  6. Chu, C. F., Meador, M. G., Young, C. G., Strasser, J. E., Bourne, N. & Milligan, G. N. ( 2008; ). Antibody-mediated protection against genital herpes simplex virus type 2 disease in mice by Fc gamma receptor-dependent and -independent mechanisms. J Reprod Immunol 78, 58–67.[CrossRef]
    [Google Scholar]
  7. de Lima, B. D., May, J. S. & Stevenson, P. G. ( 2004; ). Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78, 5103–5112.[CrossRef]
    [Google Scholar]
  8. Dingwell, K. S., Brunetti, C. R., Hendricks, R. L., Tang, Q., Tang, M., Rainbow, A. J. & Johnson, D. C. ( 1994; ). Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells. J Virol 68, 834–845.
    [Google Scholar]
  9. Faulkner, G. C., Burrows, S. R., Khanna, R., Moss, D. J., Bird, A. G. & Crawford, D. H. ( 1999; ). X-linked agammaglobulinemia patients are not infected with Epstein–Barr virus: implications for the biology of the virus. J Virol 73, 1555–1564.
    [Google Scholar]
  10. Gangappa, S., Kapadia, S. B., Speck, S. H. & Virgin, H. W. ( 2002; ). Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76, 11460–11468.[CrossRef]
    [Google Scholar]
  11. Gill, M. B., Gillet, L., Colaco, S., May, J. S., de Lima, B. D. & Stevenson, P. G. ( 2006; ). Murine gammaherpesvirus-68 glycoprotein H–glycoprotein L complex is a major target for neutralizing monoclonal antibodies. J Gen Virol 87, 1465–1475.[CrossRef]
    [Google Scholar]
  12. Gill, M. B., Edgar, R., May, J. S. & Stevenson, P. G. ( 2008; ). A gamma-herpesvirus glycoprotein complex manipulates actin to promote viral spread. PLoS ONE 3, e1808 [CrossRef]
    [Google Scholar]
  13. Gillet, L. & Stevenson, P. G. ( 2007a; ). Antibody evasion by the N terminus of murid herpesvirus-4 glycoprotein B. EMBO J 26, 5131–5142.[CrossRef]
    [Google Scholar]
  14. Gillet, L. & Stevenson, P. G. ( 2007b; ). Evidence for a multi-protein gamma-2-herpesvirus entry complex. J Virol 81, 13082–13091.[CrossRef]
    [Google Scholar]
  15. Gillet, L., Gill, M. B., Colaco, S., Smith, C. M. & Stevenson, P. G. ( 2006; ). Murine gammaherpesvirus-68 glycoprotein B presents a difficult neutralization target to monoclonal antibodies derived from infected mice. J Gen Virol 87, 3515–3527.[CrossRef]
    [Google Scholar]
  16. Gillet, L., May, J. S. & Stevenson, P. G. ( 2007a; ). Post-exposure vaccination improves gammaherpesvirus neutralization. PLoS One 2, e899 [CrossRef]
    [Google Scholar]
  17. Gillet, L., May, J. S., Colaco, S. & Stevenson, P. G. ( 2007b; ). The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS One 2, e705 [CrossRef]
    [Google Scholar]
  18. Gillet, L., Adler, H. & Stevenson, P. G. ( 2007c; ). Glycosaminoglycan interactions in murine gammaherpesvirus-68 infection. PLoS One 2, e347 [CrossRef]
    [Google Scholar]
  19. Gillet, L., May, J. S., Colaco, S. & Stevenson, P. G. ( 2007d; ). Glycoprotein L disruption reveals two functional forms of the murine gammaherpesvirus 68 glycoprotein H. J Virol 81, 280–291.[CrossRef]
    [Google Scholar]
  20. Gillet, L., Colaco, S. & Stevenson, P. G. ( 2008a; ). The murid herpesvirus-4 gL regulates an entry-associated conformation change in gH. PLoS One 3, e2811 [CrossRef]
    [Google Scholar]
  21. Gillet, L., Colaco, S. & Stevenson, P. G. ( 2008b; ). Glycoprotein B switches conformation during murid herpesvirus 4 entry. J Gen Virol 89, 1352–1363.[CrossRef]
    [Google Scholar]
  22. Gillet, L., Colaco, S. & Stevenson, P. G. ( 2008c; ). The murid herpesvirus-4 gH/gL binds to glycosaminoglycans. PLoS One 3, e1669 [CrossRef]
    [Google Scholar]
  23. Gillet, L., Alenquer, M., Glauser, D. L., Colaco, S., May, J. S. & Stevenson, P. G. ( 2009; ). Glycoprotein L sets the neutralization profile of murid herpesvirus-4. J Gen Virol 90, 1202–1214.[CrossRef]
    [Google Scholar]
  24. Hoagland, R. J. ( 1964; ). The incubation period of infectious mononucleosis. Am J Public Health Nations Health 54, 1699–1705.[CrossRef]
    [Google Scholar]
  25. Hooks, J. J., Burns, W., Hayashi, K., Geis, S. & Notkins, A. L. ( 1976; ). Viral spread in the presence of neutralizing antibody: mechanisms of persistence in foamy virus infection. Infect Immun 14, 1172–1178.
    [Google Scholar]
  26. Ishizaka, S. T., Piacente, P., Silva, J. & Mishkin, E. M. ( 1995; ). IgG subtype is correlated with efficiency of passive protection and effector function of anti-herpes simplex virus glycoprotein D monoclonal antibodies. J Infect Dis 172, 1108–1111.[CrossRef]
    [Google Scholar]
  27. Johansson, P. J. H., Myhre, E. B. & Blomberg, J. ( 1985; ). Specificity of Fc receptors induced by herpes simplex virus type 1: comparison of immunoglobulin G from different animal species. J Virol 56, 489–494.
    [Google Scholar]
  28. Julenius, K., Mølgaard, A., Gupta, R. & Brunak, S. ( 2005; ). Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15, 153–164.
    [Google Scholar]
  29. Kapadia, S. B., Molina, H., van Berkel, V., Speck, S. H. & Virgin, H. W. ( 1999; ). Murine gammaherpesvirus 68 encodes a functional regulator of complement activation. J Virol 73, 7658–7670.
    [Google Scholar]
  30. Kim, I. J., Flaño, E., Woodland, D. L. & Blackman, M. A. ( 2002; ). Antibody-mediated control of persistent gamma-herpesvirus infection. J Immunol 168, 3958–3964.[CrossRef]
    [Google Scholar]
  31. Köhler, G. & Milstein, C. ( 1975; ). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.[CrossRef]
    [Google Scholar]
  32. Kozuch, O., Reichel, M., Lesso, J., Remenová, A., Labuda, M., Lysy, J. & Mistríková, J. ( 1993; ). Further isolation of murine herpesviruses from small mammals in southwestern Slovakia. Acta Virol 37, 101–105.
    [Google Scholar]
  33. Kümel, G., Kaerner, H. C., Levine, M., Schröder, C. H. & Glorioso, J. C. ( 1985; ). Passive immune protection by herpes simplex virus-specific monoclonal antibodies and monoclonal antibody-resistant mutants altered in pathogenicity. J Virol 56, 930–937.
    [Google Scholar]
  34. Mancini, G., Carbonara, A. O. & Heremans, J. F. ( 1965; ). Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2, 235–254.[CrossRef]
    [Google Scholar]
  35. May, J. S., Colaco, S. & Stevenson, P. G. ( 2005a; ). Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. J Virol 79, 3459–3467.[CrossRef]
    [Google Scholar]
  36. May, J. S., Coleman, H. M., Boname, J. M. & Stevenson, P. G. ( 2005b; ). Murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol 86, 919–928.[CrossRef]
    [Google Scholar]
  37. May, J. S., Walker, J., Colaco, S. & Stevenson, P. G. ( 2005c; ). The murine gammaherpesvirus 68 ORF27 gene product contributes to intercellular viral spread. J Virol 79, 5059–5068.[CrossRef]
    [Google Scholar]
  38. McKendall, R. R. ( 1985; ). IgG-mediated viral clearance in experimental infection with herpes simplex virus type 1: role for neutralization and Fc-dependent functions but not C′ cytolysis and C5 chemotaxis. J Infect Dis 151, 464–470.[CrossRef]
    [Google Scholar]
  39. Milho, R., Smith, C. M., Marques, S., Alenquer, M., May, J. S., Gillet, L., Gaspar, M., Efstathiou, S., Simas, J. P. & Stevenson, P. G. ( 2009; ). In vivo imaging of murid herpesvirus-4 infection. J Gen Virol 90, 21–32.[CrossRef]
    [Google Scholar]
  40. Minson, A. C., Hodgman, T. C., Digard, P., Hancock, D. C., Bell, S. E. & Buckmaster, E. A. ( 1986; ). An analysis of the biological properties of monoclonal antibodies against glycoprotein D of herpes simplex virus and identification of amino acid substitutions that confer resistance to neutralization. J Gen Virol 67, 1001–1013.[CrossRef]
    [Google Scholar]
  41. Nash, A. A., Dutia, B. M., Stewart, J. P. & Davison, A. J. ( 2001; ). Natural history of murine gamma-herpesvirus infection. Philos Trans R Soc Lond B Biol Sci 356, 569–579.[CrossRef]
    [Google Scholar]
  42. Nimmerjahn, F. & Ravetch, J. V. ( 2008; ). Fcγ receptors as regulators of immune responses. Nat Rev Immunol 8, 34–47.[CrossRef]
    [Google Scholar]
  43. Ogilvie, M. M. ( 1998; ). Antiviral prophylaxis and treatment in chickenpox. A review prepared for the UK Advisory Group on Chickenpox on behalf of the British Society for the Study of Infection. J Infect 36 (Suppl. 1), 31–38.[CrossRef]
    [Google Scholar]
  44. Peeters, B., Pol, J., Gielkens, A. & Moormann, R. ( 1993; ). Envelope glycoprotein gp50 of pseudorabies virus is essential for virus entry but is not required for viral spread in mice. J Virol 67, 170–177.
    [Google Scholar]
  45. Rickinson, A. B. & Moss, D. J. ( 1997; ). Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection. Annu Rev Immunol 15, 405–431.[CrossRef]
    [Google Scholar]
  46. Rosa, G. T., Gillet, L., Smith, C. M., de Lima, B. D. & Stevenson, P. G. ( 2007; ). IgG Fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2, e560 [CrossRef]
    [Google Scholar]
  47. Smith, C. M., Gill, M. B., May, J. S. & Stevenson, P. G. ( 2007; ). Murine gammaherpesvirus-68 inhibits antigen presentation by dendritic cells. PLoS One 2, e1048 [CrossRef]
    [Google Scholar]
  48. Sokal, E. M., Hoppenbrouwers, K., Vandermeulen, C., Moutschen, M., Léonard, P., Moreels, A., Haumont, M., Bollen, A., Smets, F. & Denis, M. ( 2007; ). Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein–Barr virus vaccine in healthy young adults. J Infect Dis 196, 1749–1753.[CrossRef]
    [Google Scholar]
  49. Stevenson, P. G. & Doherty, P. C. ( 1998; ). Kinetic analysis of the specific host response to a murine gammaherpesvirus. J Virol 72, 943–949.
    [Google Scholar]
  50. Stevenson, P. G. & Efstathiou, S. ( 2005; ). Immune mechanisms in murine gammaherpesvirus-68 infection. Viral Immunol 18, 445–456.[CrossRef]
    [Google Scholar]
  51. Stevenson, P. G., Cardin, R. D., Christensen, J. P. & Doherty, P. C. ( 1999; ). Immunological control of a murine gammaherpesvirus independent of CD8+ T cells. J Gen Virol 80, 477–483.
    [Google Scholar]
  52. Stewart, J. P., Usherwood, E. J., Ross, A., Dyson, H. & Nash, T. ( 1998; ). Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 187, 1941–1951.[CrossRef]
    [Google Scholar]
  53. Thorley-Lawson, D. A. & Geilinger, K. ( 1980; ). Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein–Barr virus neutralize infectivity. Proc Natl Acad Sci U S A 77, 5307–5311.[CrossRef]
    [Google Scholar]
  54. Virgin, H. W. & Speck, S. H. ( 1999; ). Unraveling immunity to γ-herpesviruses: a new model for understanding the role of immunity in chronic virus infection. Curr Opin Immunol 11, 371–379.[CrossRef]
    [Google Scholar]
  55. Walker, R. C., Paya, C. V., Marshall, W. F., Strickler, J. G., Wiesner, R. H., Velosa, J. A., Habermann, T. M., Daly, R. C. & McGregor, C. G. ( 1995; ). Pretransplantation seronegative Epstein–Barr virus status is the primary risk factor for posttransplantation lymphoproliferative disorder in adult heart, lung, and other solid organ transplantations. J Heart Lung Transplant 14, 214–221.
    [Google Scholar]
  56. Whitley, R. J. ( 1994; ). Neonatal herpes simplex virus infections: is there a role for immunoglobulin in disease prevention and therapy? Pediatr Infect Dis J 13, 432–438.[CrossRef]
    [Google Scholar]
  57. Yao, Q. Y., Ogan, P., Rowe, M., Wood, M. & Rickinson, A. B. ( 1989; ). The Epstein–Barr virus : host balance in acute infectious mononucleosis patients receiving acyclovir anti-viral therapy. Int J Cancer 43, 61–66.[CrossRef]
    [Google Scholar]
  58. Zinkernagel, R. M. & Hengartner, H. ( 2006; ). Protective ‘immunity’ by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called ‘immunological memory’. Immunol Rev 211, 310–319.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014266-0
Loading
/content/journal/jgv/10.1099/vir.0.014266-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error