1887

Abstract

Adeno-associated virus serotype 2 (AAV-2) has been developed as a gene therapy vector. Antibody and cell-mediated immune responses to AAV-2 or AAV-2-transfected cells may confound the therapeutic use of such vectors in clinical practice. In one of the most detailed examinations of AAV-2 immunity in humans to date, cell-mediated and humoral immune responses to AAV-2 were characterized from a panel of healthy blood donors. The extent of AAV-2-specific antibody in humans was determined by examination of circulating AAV-2-specific total IgG levels in plasma from 45 normal donors. Forty-one donors were seropositive and responses were dominated by IgG1 and IgG2 subclasses. Conversely, AAV-2-specific IgG3 levels were consistently low in all donors. Cell-mediated immune recall responses were detectable in nearly half the population studied. restimulation with AAV-2 of peripheral blood mononuclear cell cultures from 16 donors elicited gamma interferon (IFN-) (ten donors), interleukin-10 (IL-10) (eight donors) and interleukin-13 (IL-13) (four donors) responses. Using a series of overlapping peptides derived from the sequence of the VP1 viral capsid protein, a total of 59 candidate T-cell epitopes were identified. Human leukocyte antigen characterization of donors revealed that the population studied included diverse haplotypes, but that at least 17 epitopes were recognized by multiple donors and could be regarded as immunodominant. These data indicate that robust immunological memory to AAV-2 is established. The diversity of sequences recognized suggests that attempts to modify the AAV-2 capsid, as a strategy to avoid confounding immunity, will not be feasible.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014175-0
2009-11-01
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/11/2622.html?itemId=/content/journal/jgv/10.1099/vir.0.014175-0&mimeType=html&fmt=ahah

References

  1. Arruda V. R., Stedman H. H., Nichols T. C., Haskins M. E., Nicholson M., Herzog R. W., Couto L. B., High K. A. 2005; Regional intravascular delivery of AAV-2-F.IX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 105:3458–3464 [CrossRef]
    [Google Scholar]
  2. Atchison R. W. 1970; The role of herpesviruses in adenovirus-associated virus replication in vitro . Virology 42:155–162 [CrossRef]
    [Google Scholar]
  3. Atchison R. W., Casto B. C., Hammon W. M. 1965; Adenovirus-associated defective virus particles. Science 149:754–756 [CrossRef]
    [Google Scholar]
  4. Blacklow N. R., Hoggan M. D., Kapikian A. Z., Austin J. B., Rowe W. P. 1968a; Epidemiology of adenovirus-associated virus infection in a nursery population. Am J Epidemiol 88:368–378
    [Google Scholar]
  5. Blacklow N. R., Hoggan M. D., Rowe W. P. 1968b; Serologic evidence for human infection with adenovirus-associated viruses. J Natl Cancer Inst 40:319–327
    [Google Scholar]
  6. Brantly M. L., Spencer L. T., Humphries M., Conlon T. J., Spencer C. T., Poirier A., Garlington W., Baker D., Song S. other authors 2006; Phase I trial of intramuscular injection of a recombinant adeno-associated virus serotype 2 α 1-antitrypsin (AAT) vector in AAT-deficient adults. Hum Gene Ther 17:1177–1186 [CrossRef]
    [Google Scholar]
  7. Büning H., Ried M. U., Perabo L., Gerner F. M., Huttner N. A., Enssle J., Hallek M. 2003; Receptor targeting of adeno-associated virus vectors. Gene Ther 10:1142–1151 [CrossRef]
    [Google Scholar]
  8. Chen J., Wu Q., Yang P., Hsu H. C., Mountz J. D. 2006; Determination of specific CD4 and CD8 T cell epitopes after AAV2- and AAV8-hF.IX gene therapy. Mol Ther 13:260–269 [CrossRef]
    [Google Scholar]
  9. Chirmule N., Propert K. J., Magosin S. A., Qian Y., Qian R., Wilson J. M. 1999; Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther 6:1574–1583 [CrossRef]
    [Google Scholar]
  10. Clark K. R., Sferra T. J., Johnson P. R. 1997; Recombinant adeno-associated viral vectors mediate long-term transgene expression in muscle. Hum Gene Ther 8:659–669 [CrossRef]
    [Google Scholar]
  11. Corcoran A., Doyle S., Waldron D., Nicholson A., Mahon B. P. 2000; Impaired gamma interferon responses against parvovirus B19 by recently infected children. J Virol 74:9903–9910 [CrossRef]
    [Google Scholar]
  12. Dunne C., Crowley J., Hagan R., Rooney G., Lawlor E. 2008; HLA-A, B, Cw, DRB1, DQB1 and DPB1 alleles and haplotypes in the genetically homogenous Irish population. Int J Immunogenet 35:295–302 [CrossRef]
    [Google Scholar]
  13. Erles K., Sebökovà P., Schlehofer J. R. 1999; Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol 59:406–411 [CrossRef]
    [Google Scholar]
  14. Flotte T. R., Afione S. A., Solow R., Drumm M. L., Markakis D., Guggino W. B., Zeitlin P. L., Carter B. J. 1993; Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J Biol Chem 268:3781–3790
    [Google Scholar]
  15. Franssila R., Söderlund M., Brown C. S., Spaan W. J. M., Seppälä I., Hedman K. 1996; IgG subclass response to human parvovirus B19 infection. Clin Diagn Virol 6:41–49 [CrossRef]
    [Google Scholar]
  16. Gao G., Vandenberghe L. H., Alvira M. R., Lu Y., Calcedo R., Zhou X., Wilson J. M. 2004; Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388 [CrossRef]
    [Google Scholar]
  17. Gould D. J., Favorov P. 2003; Vectors for the treatment of autoimmune disease. Gene Ther 10:912–927 [CrossRef]
    [Google Scholar]
  18. Gregorek H., Madalinski K., Woynarowski M., Mikolajewicz J., Syczewska M., Socha J. 2000; The IgG subclass profile of anti-HBs response in vaccinated children and children seroconverted after natural infection. Vaccine 18:1210–1217 [CrossRef]
    [Google Scholar]
  19. Halbert C. L., Standaert T. A., Aitken M. L., Alexander I. E., Russell D. W., Miller A. D. 1997; Transduction by adeno-associated virus vectors in the rabbit airway: efficiency, persistence and readministration. J Virol 71:5932–5941
    [Google Scholar]
  20. Halbert C. L., Miller A. D., McNamara S., Emerson J., Gibson R. L., Ramsey B., Aitken M. L. 2006; Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: implications for gene therapy using AAV vectors. Hum Gene Ther 17:440–447 [CrossRef]
    [Google Scholar]
  21. Hauswirth W. W., Aleman T. S., Kaushal S., Cideciyan A. V., Schwartz S. B., Wang L., Conlon T. J., Boye S. L., Flotte T. R. other authors 2008; Treatment of leber congenital amaurosis due to RPE65 mutations by occular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990 [CrossRef]
    [Google Scholar]
  22. Hernandez Y. J., Wang J., Kearns W. G., Loiler S., Poirier A., Flotte T. R. 1999; Latent adeno-associated virus infection elicits humoral but not cell-mediated immune responses in a nonhuman primate model. J Virol 73:8549–8558
    [Google Scholar]
  23. High K. A., Manno C. S., Sabatino D., Hutchison S., Dake M., Razavi M., Kaye R., Aruda V., Herzog R. other authors 2004; Immune responses to AAV and to factor IX in a phase I study of AAV-mediated, liver-directed gene transfer for hemophilia B. Mol Ther 9:S383–S384
    [Google Scholar]
  24. Jefferis R., Kumararatne D. S. 1990; Selective IgG subclass deficiency: quantification and clinical relevance. Clin Exp Immunol 81:357–367
    [Google Scholar]
  25. Kalvenes M. B., Kalland K. H., Haukenes G. 1996; Immunoglobulin G subclass antibodies to rubella virus in chronic liver disease, acute rubella and healthy controls. FEMS Immunol Med Microbiol 13:43–50 [CrossRef]
    [Google Scholar]
  26. Kaplitt M. G., Leone P., Samulski R. J., Xiao X., Pfaff D. W., O'Malley K. L., During M. J. 1994; Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–154 [CrossRef]
    [Google Scholar]
  27. Kaplitt M. G., Feigin A., Tang C., Fitzsimons H. L., Mattis P., Lawlor P. A., Bland R. J., Young D., Strybing K. other authors 2007; Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 369:2097–2105 [CrossRef]
    [Google Scholar]
  28. Koeberl D. D., Alexander I. E., Halbert C. L., Russell D. W., Miller A. D. 1997; Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci U S A 94:1426–1431 [CrossRef]
    [Google Scholar]
  29. Kotin R. M., Siniscalco M., Samulski R. J., Zhu X. D., Hunter L., Laughlin C. A., McLaughlin S., Muzyczka N., Rocchi M., Berns K. I. 1990; Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 87:2211–2215 [CrossRef]
    [Google Scholar]
  30. Kremer E. J., Perricaudet M. 1995; Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull 51:31–44
    [Google Scholar]
  31. Lal R. B., Buckner C., Khabbaz R. F., Kaplan J. E., Reyes G., Hadlock K., Lipka J., Foung S. K. H., Chan L., Coligan J. E. 1993; Isotypic and IgG subclass restriction of the humoral immune responses to human T-lymphotropic virus type-I. Clin Immunol Immunopathol 67:40–49 [CrossRef]
    [Google Scholar]
  32. Li H., Murphy S. L., Giles-Davis W., Edmonson S., Xiang Z., Li Y., Lasaro M., High K. A., Ertl H. C. 2007; Pre-existing AAV capsid-specific CD8+ T cells are unable to eliminate AAV-transduced hepatocytes. Mol Ther 15:792–800
    [Google Scholar]
  33. Manno C. S., Pierce G., Arruda V. R., Glader B., Ragni M., Rasko J. J., Ozelo M. C., Hoots K., Blatt P. other authors 2006; Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 12:342–347 [CrossRef]
    [Google Scholar]
  34. Monahan P. E., Samulski R. J. 2000; AAV vectors: is clinical success on the horizon?. Gene Ther 7:24–30 [CrossRef]
    [Google Scholar]
  35. Moss R. B., Rodman D., Spencer L. T., Aitken M. L., Zeitlin P. L., Waltz D. A., Milla C., Brody A. S., Clancy J. P. other authors 2004; Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 125:509–521 [CrossRef]
    [Google Scholar]
  36. Moss R. B., Milla C., Colombo J., Accurso F., Zeitlin P. L., Clancy J. P., Spencer L. T., Pilewski J., Waltz D. A. other authors 2007; Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther 18:726–732 [CrossRef]
    [Google Scholar]
  37. Murphy S. L., Li H., Mingozzi F., Sabatino D. E., Hui D. J., Edmonson S. A., High K. A. 2009; Diverse IgG subclass responses to adeno-associated virus infection and vector administration. J Med Virol 81:65–74 [CrossRef]
    [Google Scholar]
  38. Rabinowitz J. E., Samulski R. J. 2000; Building a better vector: the manipulation of AAV virions. Virology 278:301–308 [CrossRef]
    [Google Scholar]
  39. Rammensee H.-G., Bachmann J., Emmerich N. P. N., Bachor O. A., Stevanović S. 1999; SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219 [CrossRef]
    [Google Scholar]
  40. Ryan M., Murphy G., Ryan E., Nilsson L., Shackley F., Grothefors L., Øymar K., Miller E., Storsacter J., Mills K. H. G. 1998; Distinct Th cell subtypes induced with whole cell and acellular pertussis vaccines in children. Immunology 93:1–10 [CrossRef]
    [Google Scholar]
  41. Ryan J. M., Barry F., Murphy J. M., Mahon B. P. 2007; Interferon- γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol 149:353–363 [CrossRef]
    [Google Scholar]
  42. Sabatino D. E., Mingozzi F., Hui D. J., Chen H., Colosi P., Ertl H. C. J., High K. A. 2005; Identification of mouse AAV capsid-specific CD8+ T cell epitopes. Mol Ther 12:1023–1033 [CrossRef]
    [Google Scholar]
  43. Samulski R. J., Giles J. 2005; Adeno-associated viral vectors for clinical gene therapy in the brain. In Principles of Molecular Neurosurgery vol. 18 pp 154–168Edited by Freese A., Simeone F. A., Leone P., Janson C. Basel: Karger;
    [Google Scholar]
  44. Stender S., Murphy M., O'Brien T., Stengaard C., Ulrich-Vinther M., Søballe K., Barry F. 2007; Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur Cell Mater 13:93–99
    [Google Scholar]
  45. Streilein J. W. 2003; Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 3:879–889 [CrossRef]
    [Google Scholar]
  46. Thomas H. I. J., Morgan-Capner P. 1988; Rubella-specific IgG subclass concentrations in sera using an enzyme-linked immunosorbent assay (ELISA): the effect of different sources of rubella antigen. Epidemiol Infect 101:599–604 [CrossRef]
    [Google Scholar]
  47. Tobiasch E., Rabreau M., Geletneky K., Laruë-Charlus S., Severin F., Becker N., Schlehofer J. 1994; Detection of adeno-associated virus DNA in human genital tissue and in material from spontaneous abortion. J Med Virol 44:215–222 [CrossRef]
    [Google Scholar]
  48. Toptygina A. P., Pukhalsky A. L., Alioshkin V. A. 2005; Immunoglobulin G subclass profile of antimeasles response in vaccinated children and in adults with measles history. Clin Diagn Lab Immunol 12:845–847
    [Google Scholar]
  49. Wang L., Figueredo J., Calcedo R., Lin J., Wilson J. M. 2007; Cross-presentation of adeno-associated virus serotype 2 capsids activates cytotoxic T cells but does not render hepatocytes effective cytolytic targets. Hum Gene Ther 18:185–194 [CrossRef]
    [Google Scholar]
  50. Xiao W., Chirmule N., Berta S. C., McCullough B., Gao G., Wilson J. M. 1999; Gene therapy vectors based on adeno-associated virus type 1. J Virol 73:3994–4003
    [Google Scholar]
  51. Xiao W., Chirmule N., Schnell M. A., Tazelaar J., Hughes J. V., Wilson J. M. 2000; Route of administration determines induction of T-cell-independent humoral responses to adeno-associated virus vectors. Mol Ther 1:323–329 [CrossRef]
    [Google Scholar]
  52. Xie Q., Bu W., Bhatia S., Hare J., Somasundaram T., Azzi A., Chapman M. S. 2002; The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A 99:10405–10410 [CrossRef]
    [Google Scholar]
  53. Yue Y., Ghosh A., Long C., Bostick B., Smith B. F., Kornegay J. N., Duan D. 2008; A single intravenous injection of adeno-associated virus serotype-9 leads to whole body skeletal muscle transduction in dogs. Mol Ther 16:1944–1952 [CrossRef]
    [Google Scholar]
  54. Zaiss A. K., Muruve D. A. 2005; Immune responses to adeno-associated virus vectors. Curr Gene Ther 5:323–331 [CrossRef]
    [Google Scholar]
  55. Zaiss A. K., Liu Q., Bowen G. P., Wong N. C. W., Bartlett J. S., Muruve D. A. 2002; Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 76:4580–4590 [CrossRef]
    [Google Scholar]
  56. Zaiss A. K., Cotter M. J., White L. R., Clark S. A., Wong N. C. W., Holers V. M., Bartlett J. S., Muruve D. A. 2008; Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol 82:2727–2740 [CrossRef]
    [Google Scholar]
  57. Zhang J., Wu X., Qin C., Qi J., Ma S., Zhang H., Kong Q., Chen D., Ba D., He W. 2003; A novel recombinant adeno-associated virus vaccine reduces behavioural impairment and β -amyloid plaques in a mouse model of Alzheimer's disease. Neurobiol Dis 14:365–379 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.014175-0
Loading
/content/journal/jgv/10.1099/vir.0.014175-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error