1887

Abstract

Potato virus Y (PVY) is one of the most economically important plant pathogens. The PVY genome has a high degree of genetic variability and is also subject to recombination. New recombinants have been reported in many countries since the 1980s, but the origin of these recombinant strains and the physical and evolutionary mechanisms driving their emergence are not clear at the moment. The replicase-mediated template-switching model is considered the most likely mechanism for forming new RNA virus recombinants. Two factors, RNA secondary structure (especially stem–loop structures) and AU-rich regions, have been reported to affect recombination in this model. In this study, we investigated the influence of these two factors on PVY recombination from two perspectives: their distribution along the whole genome and differences between regions flanking the recombination junctions (RJs). Based on their distributions, only a few identified RJs in PVY genomes were located in lower negative FORS-D, i.e. having greater secondary-structure potential and higher AU-content regions, but most RJs had more negative FORS-D values upstream and/or higher AU content downstream. Our whole-genome analyses showed that RNA secondary structures and/or AU-rich regions at some sites may have affected PVY recombination, but in general they were not the main forces driving PVY recombination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014142-0
2009-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/12/3033.html?itemId=/content/journal/jgv/10.1099/vir.0.014142-0&mimeType=html&fmt=ahah

References

  1. Allison, R. F., Janda, M. & Ahlquist, P. ( 1989; ). Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution. Virology 172, 321–330.[CrossRef]
    [Google Scholar]
  2. Baldauf, P. M., Gray, S. M. & Perry, K. L. ( 2006; ). Biological and serological properties of potato virus Y isolates in Northeastern United States potato. Plant Dis 90, 559–566.[CrossRef]
    [Google Scholar]
  3. Boonham, N., Walsh, K., Hims, M., Preston, S., North, J. & Barker, I. ( 2002; ). Biological and sequence comparisons of potato virus Y isolates associated with potato tuber necrotic ringspot disease. Plant Pathol 51, 117–126.[CrossRef]
    [Google Scholar]
  4. Cascone, P. J., Haydar, T. F. & Simon, A. E. ( 1993; ). Sequences and structures required for recombination between virus-associated RNAs. Science 260, 801–805.[CrossRef]
    [Google Scholar]
  5. Cheng, C.-P. & Nagy, P. D. ( 2003; ). Mechanism of RNA recombination in carmo- and tombusviruses: evidence for template switching by the RNA-dependent RNA polymerase in vitro. J Virol 77, 12033–12047.[CrossRef]
    [Google Scholar]
  6. Chikh Ali, M., Maoka, T. & Natsuaki, K. T. ( 2007; ). The occurrence and characterization of new recombinant isolates of PVY displaying shared properties of PVYNW and PVYNTN. J Phytopathol 155, 409–415.[CrossRef]
    [Google Scholar]
  7. Crosslin, J. M., Hamm, P. B., Shiel, P. J., Hane, D. C., Brown, C. R. & Berger, P. H. ( 2005; ). Serological and molecular detection of tobacco veinal necrosis isolates of Potato virus Y (PVYN) from potatoes grown in the western United States. Am J Potato Res 82, 263–269.[CrossRef]
    [Google Scholar]
  8. de Bokx, J. A. & Huttinga, H. (editors) ( 1981; ). Potato virus Y. In Descriptions of Plant Viruses. Kew, UK: Commonwealth Mycological Institute/Association of Applied Biologists.
  9. Dougherty, W. G. & Carrington, J. C. ( 1988; ). Expression and function of potyviral gene products. Annu Rev Phytopathol 26, 123–143.[CrossRef]
    [Google Scholar]
  10. Edgar, R. C. ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.[CrossRef]
    [Google Scholar]
  11. Fanigliulo, A., Comes, S., Pacella, R., Harrach, B., Martin, D. P. & Crescenzi, A. ( 2005; ). Characterisation of Potato virus Y nnp strain inducing veinal necrosis in pepper: a naturally occurring recombinant strain of PVY. Arch Virol 150, 709–720.[CrossRef]
    [Google Scholar]
  12. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A. (editors) ( 2005; ). Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, CA: Elsevier Academic Press.
  13. Fellers, J. P., Tremblay, D., Handest, M. F. & Lommel, S. A. ( 2002; ). The Potato virus Y MsNr NIb-replicase is the elicitor of a veinal necrosis-hypersensitive response in root knot nematode resistant tobacco. Mol Plant Pathol 3, 145–152.[CrossRef]
    [Google Scholar]
  14. Forsdyke, D. R. ( 1995; ). A stem-loop “kissing” model for the initiation of recombination and the origin of introns. Mol Biol Evol 12, 949–958.
    [Google Scholar]
  15. Fraile, A., Alonso-Prados, J. L., Aranda, M. A., Bernal, J. J., Malpica, J. M. & Garcia-Arenal, F. ( 1997; ). Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J Virol 71, 934–940.
    [Google Scholar]
  16. Gibbs, M. ( 1995; ). The luteovirus supergroup: rampant recombination and persistent partnerships. In Molecular Basis of Viral Evolution, pp. 351–368. Edited by A. J. Gibbs, C. H. Calisher & F. Garcia-Arenal. Cambridge: Cambridge University Press.
  17. Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. ( 2000; ). Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16, 573–582.[CrossRef]
    [Google Scholar]
  18. Glais, L., Tribodet, M. & Kerlan, C. ( 2002; ). Genomic variability in Potato potyvirus Y (PVY): evidence that PVYNW and PVYNTN variants are single to multiple recombinants between PVYO and PVYN isolates. Arch Virol 147, 363–378.[CrossRef]
    [Google Scholar]
  19. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  20. Hasegawa, M., Kishino, H. & Yano, T. ( 1985; ). Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174.[CrossRef]
    [Google Scholar]
  21. Hofacker, I. L., Fontana, W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M. & Schuster, P. ( 1994; ). Fast folding and comparison of RNA secondary structures. Monatsh Chem 125, 167–188.[CrossRef]
    [Google Scholar]
  22. Holmes, E. C., Worobey, M. & Rambaut, A. ( 1999; ). Phylogenetic evidence for recombination in dengue virus. Mol Biol Evol 16, 405–409.[CrossRef]
    [Google Scholar]
  23. Jakab, G., Droz, E., Brigneti, G., Baulcombe, D. & Malnoe, P. ( 1997; ). Infectious in vivo and in vitro transcripts from a full-length cDNA clone of PVY-N605, a Swiss necrotic isolate of Potato virus Y. J Gen Virol 78, 3141–3145.
    [Google Scholar]
  24. Le Gall, O., Candresse, T. & Dunez, J. ( 1995a; ). Transfer of the 3′ non-translated region of grapevine chrome mosaic virus RNA-1 by recombination to tomato black ring virus RNA-2 in pseudorecombinant isolates. J Gen Virol 76, 1285–1289.[CrossRef]
    [Google Scholar]
  25. Le Gall, O., Lanneau, M., Candresse, T. & Dunez, J. ( 1995b; ). The nucleotide sequence of the RNA-2 of an isolate of the English serotype of tomato black ring virus: RNA recombination in the history of nepoviruses. J Gen Virol 76, 1279–1283.[CrossRef]
    [Google Scholar]
  26. Lorenzen, J. H., Meacham, T., Berger, P. H., Shiel, P. J., Crosslin, J. M., Hamm, P. B. & Kopp, H. ( 2006; ). Whole genome characterization of Potato virus Y isolates collected in the western USA and their comparison to isolates from Europe and Canada. Arch Virol 151, 1055–1074.[CrossRef]
    [Google Scholar]
  27. Lorenzen, J., Nolte, P., Martin, D., Pasche, J. & Gudmestad, N. ( 2008; ). NE-11 represents a new strain variant class of Potato virus Y. Arch Virol 153, 517–525.[CrossRef]
    [Google Scholar]
  28. Martin, D. & Rybicki, E. ( 2000; ). rdp: detection of recombination amongst aligned sequences. Bioinformatics 16, 562–563.[CrossRef]
    [Google Scholar]
  29. Martin, D. P., Williamson, C. & Posada, D. ( 2005a; ). rdp2: recombination detection and analysis from sequence alignments. Bioinformatics 21, 260–262.[CrossRef]
    [Google Scholar]
  30. Martin, D. P., Posada, D., Crandall, K. A. & Williamson, C. ( 2005b; ). A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21, 98–102.[CrossRef]
    [Google Scholar]
  31. Moury, B., Morel, C., Johansen, E. & Jacquemond, M. ( 2002; ). Evidence for diversifying selection in Potato virus Y and in the coat protein of other potyviruses. J Gen Virol 83, 2563–2573.
    [Google Scholar]
  32. Nagy, P. D. ( 2008; ). Recombination in plant viruses. In Plant Virus Evolution, pp. 133–156. Edited by M. J. Roossinck. Heidelberg: Springer.
  33. Nagy, P. D. & Bujarski, J. J. ( 1993; ). Targeting the site of RNA–RNA recombination in brome mosaic virus with antisense sequences. Proc Natl Acad Sci U S A 90, 6390–6394.[CrossRef]
    [Google Scholar]
  34. Nagy, P. D. & Bujarski, J. J. ( 1996; ). Homologous RNA recombination in brome mosaic virus: AU-rich sequences decrease the accuracy of crossovers. J Virol 70, 415–426.
    [Google Scholar]
  35. Nagy, P. D. & Bujarski, J. J. ( 1997; ). Engineering of homologous recombination hotspots with AU-rich sequences in brome mosaic virus. J Virol 71, 3799–3810.
    [Google Scholar]
  36. Nagy, P. D. & Bujarski, J. J. ( 1998; ). Silencing homologous RNA recombination hot spots with GC-rich sequences in brome mosaic virus. J Virol 72, 1122–1130.
    [Google Scholar]
  37. Nagy, P. D. & Simon, A. E. ( 1997; ). New insights into the mechanisms of RNA recombination. Virology 235, 1–9.[CrossRef]
    [Google Scholar]
  38. Nagy, P. D., Zhang, C. & Simon, A. E. ( 1998; ). Dissecting RNA recombination in vitro: role of RNA sequences and the viral replicase. EMBO J 17, 2392–2403.[CrossRef]
    [Google Scholar]
  39. Nagy, P. D., Ogiela, C. & Bujarski, J. J. ( 1999a; ). Mapping sequences active in homologous RNA recombination in brome mosaic virus: prediction of recombination hot spots. Virology 254, 92–104.[CrossRef]
    [Google Scholar]
  40. Nagy, P. D., Pogany, J. & Simon, A. E. ( 1999b; ). RNA elements required for RNA recombination function as replication enhancers in vitro and in vivo in a plus-strand RNA virus. EMBO J 18, 5653–5665.[CrossRef]
    [Google Scholar]
  41. Nayak, M. K., Balasubramanian, G., Sahoo, G. C., Bhattacharya, R., Vinje, J., Kobayashi, N., Sarkar, M. C., Bhattacharya, M. K. & Krishnan, T. ( 2008; ). Detection of a novel intergenogroup recombinant Norovirus from Kolkata, India. Virology 377, 117–123.[CrossRef]
    [Google Scholar]
  42. Nie, X. & Singh, R. P. ( 2003; ). Evolution of North American PVYNTN strain Tu 660 by mutation rather than recombination. Virus Genes 26, 39–47.[CrossRef]
    [Google Scholar]
  43. Nie, X., Singh, R. P. & Singh, M. ( 2004; ). Molecular and pathological characterization of N:O isolates of the Potato virus Y from Manitoba, Canada. Can J Plant Pathol 26, 573–583.[CrossRef]
    [Google Scholar]
  44. Ogawa, T., Tomitaka, Y., Nakagawa, A. & Ohshima, K. ( 2008; ). Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. Virus Res 131, 199–212.[CrossRef]
    [Google Scholar]
  45. Ohshima, K., Tomitaka, Y., Wood, J. T., Minematsu, Y., Kajiyama, H., Tomimura, K. & Gibbs, A. J. ( 2007; ). Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. J Gen Virol 88, 298–315.[CrossRef]
    [Google Scholar]
  46. Padidam, M., Sawyer, S. & Fauquet, C. M. ( 1999; ). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225.[CrossRef]
    [Google Scholar]
  47. Piche, L. M., Singh, R. P., Nie, X. & Gudmestad, N. C. ( 2004; ). Diversity among Potato virus Y isolates obtained from potatoes grown in the United States. Phytopathology 94, 1368–1375.[CrossRef]
    [Google Scholar]
  48. Pilipenko, E. V., Gmyl, A. P. & Agol, V. I. ( 1995; ). A model for rearrangements in RNA genomes. Nucleic Acids Res 23, 1870–1875.[CrossRef]
    [Google Scholar]
  49. Posada, D. & Crandall, K. A. ( 2001; ). Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98, 13757–13762.[CrossRef]
    [Google Scholar]
  50. Revers, F., Le Gall, O., Candresse, T., Le Romancer, M. & Dunez, J. ( 1996; ). Frequent occurrence of recombinant potyvirus isolates. J Gen Virol 77, 1953–1965.[CrossRef]
    [Google Scholar]
  51. Riechmann, J. L., Lain, S. & Garcia, J. A. ( 1992; ). Highlights and prospects of potyvirus molecular biology. J Gen Virol 73, 1–16.[CrossRef]
    [Google Scholar]
  52. Robaglia, C., Durand-Tardif, M., Tronchet, M., Boudazin, G., Astier-Manifacier, S. & Casse-Delbart, F. ( 1989; ). Nucleotide sequence of potato virus Y (N strain) genomic RNA. J Gen Virol 70, 935–947.[CrossRef]
    [Google Scholar]
  53. Rohayem, J., Munch, J. & Rethwilm, A. ( 2005; ). Evidence of recombination in the norovirus capsid gene. J Virol 79, 4977–4990.[CrossRef]
    [Google Scholar]
  54. Roossinck, M. J. ( 1997; ). Mechanisms of plant virus evolution. Annu Rev Phytopathol 35, 191 [CrossRef]
    [Google Scholar]
  55. Roossinck, M. J. ( 2003; ). Plant RNA virus evolution. Curr Opin Microbiol 6, 406–409.[CrossRef]
    [Google Scholar]
  56. Schubert, J., Fomitcheva, V. & Sztangret-Wisniewska, J. ( 2007; ). Differentiation of Potato virus Y strains using improved sets of diagnostic PCR-primers. J Virol Methods 140, 66–74.[CrossRef]
    [Google Scholar]
  57. Shapka, N. & Nagy, P. D. ( 2004; ). The AU-rich RNA recombination hot spot sequence of Brome mosaic virus is functional in tombusviruses: implications for the mechanism of RNA recombination. J Virol 78, 2288–2300.[CrossRef]
    [Google Scholar]
  58. Simon, A. E. & Bujarski, J. J. ( 1994; ). RNA–RNA recombination and evolution in virus-infected plants. Annu Rev Phytopathol 32, 337–362.[CrossRef]
    [Google Scholar]
  59. Singh, M. & Singh, R. P. ( 1996; ). Nucleotide sequence and genome organization of a Canadian isolate of the common strain of Potato virus Y (PVYO). Can J Plant Pathol 18, 209–214.[CrossRef]
    [Google Scholar]
  60. Singh, R. P., McLaren, D. L., Nie, X. & Singh, M. ( 2003; ). Possible escape of a recombinant isolate of Potato virus Y by serological indexing and methods of its detection. Plant Dis 87, 679–685.[CrossRef]
    [Google Scholar]
  61. Smith, J. M. ( 1992; ). Analyzing the mosaic structure of genes. J Mol Evol 34, 126–129.
    [Google Scholar]
  62. Strauss, J. H. & Strauss, E. G. ( 1988; ). Evolution of RNA Viruses. Annu Rev Microbiol 42, 657–683.[CrossRef]
    [Google Scholar]
  63. Thole, V., Dalmay, T., Burgyán, J. & Balázs, E. ( 1993; ). Cloning and sequencing of potato virus Y (Hungarian isolate) genomic RNA. Gene 123, 149–156.[CrossRef]
    [Google Scholar]
  64. Vigne, E., Marmonier, A. & Fuchs, M. ( 2008; ). Multiple interspecies recombination events within RNA2 of Grapevine fanleaf virus and Arabis mosaic virus. Arch Virol 153, 1771–1776.[CrossRef]
    [Google Scholar]
  65. Vives, M. C., Rubio, L., Sambade, A., Mirkov, T. E., Moreno, P. & Guerri, J. ( 2005; ). Evidence of multiple recombination events between two RNA sequence variants within a Citrus tristeza virus isolate. Virology 331, 232–237.[CrossRef]
    [Google Scholar]
  66. White, K. A. & Morris, T. J. ( 1995; ). RNA determinants of junction site selection in RNA virus recombinants and defective interfering RNAs. RNA 1, 1029–1040.
    [Google Scholar]
  67. Zhang, C.-Y., Wei, J.-F. & He, S.-H. ( 2005; ). The key role for local base order in the generation of multiple forms of China HIV-1 B′/C intersubtype recombinants. BMC Evol Biol 5, 53 [CrossRef]
    [Google Scholar]
  68. Zhang, C., Gu, H. & Ghabrial, S. A. ( 2007; ). Molecular characterization of naturally occurring RNA1 recombinants of the Comovirus bean pod mottle virus. Phytopathology 97, 1255–1262.[CrossRef]
    [Google Scholar]
  69. Zhang, C.-Y., Wei, J.-F., Wu, J.-S., Xu, W.-R., Sun, X. & He, S.-H. ( 2008; ). Evaluation of FORS-D analysis: a comparison with the statistically significant stem–loop potential. Biochem Genet 46, 29–40.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014142-0
Loading
/content/journal/jgv/10.1099/vir.0.014142-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3033–3041

Multiple sequence alignments of breakpoints [ PDF] (148 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error