The emergence and rapid global spread of rabbit hemorrhagic disease virus (RHDV) remains enigmatic despite two decades of study, largely due to the difficulties associated with modelling substitution processes of the RNA genome for phylogenetic inference. We used maximum-likelihood and Bayesian methods to investigate rates of molecular evolution in the capsid gene, finding evidence of positive selection and of variable substitution rates between nucleotide sites and between lineages. The maximum-likelihood and Bayesian analyses produced fully congruent topologies; however, strong support for older nodes of the phylogeny was only obtained from the Bayesian analyses that utilized the additional information of collection dates for RHDV isolates spanning 22 years. These dates also allowed calibration of the RHDV phylogenetic tree in a calendar year timescale and estimation of dates for the most recent common ancestors of virulent and benign strains. These dates suggested the divergence of RHDV approximately 20 years prior to the first report of haemorrhagic disease in rabbits.


Article metrics loading...

Loading full text...

Full text loading...



  1. Abrantes, J., Esteves, P. J. & van der Loo, W.(2008). Evidence for recombination in the major capsid gene VP60 of the rabbit haemorrhagic disease virus (RHDV). Arch Virol 153, 329–335.[CrossRef] [Google Scholar]
  2. Anisimova, M., Nielsen, R. & Yang, Z.(2003). Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164, 1229–1236. [Google Scholar]
  3. Boga, J. A., Casais, R., Marín, M. S., Martín Alonso, J. M., Cármenes, R. S., Prieto, M. & Parra, F.(1994). Molecular cloning, sequencing and expression in Escherichia coli of the capsid protein gene from rabbit haemorrhagic disease virus (Spanish isolate AST/89). J Gen Virol 75, 2409–2413.[CrossRef] [Google Scholar]
  4. Buckley, T. R. & Cunningham, C. W.(2002). The effects of substitution model assumptions on estimates of nonparametric bootstrap support. Mol Biol Evol 19, 394–405.[CrossRef] [Google Scholar]
  5. Capucci, L., Fusi, P., Lavazza, A., Pacciarini, M. L. & Rossi, C.(1996). Detection and preliminary characterization of a new rabbit calicivirus related to rabbit hemorrhagic disease virus but non-pathogenic. J Virol 70, 8614–8623. [Google Scholar]
  6. Capucci, L., Fallacara, F., Grazioli, S., Lavazza, A., Pacciarini, M. L. & Brocchi, E.(1998). A further step in the evolution of rabbit hemorrhagic disease virus: the appearance of the first consistent antigenic variant. Virus Res 58, 115–126.[CrossRef] [Google Scholar]
  7. Chen, R., Neill, J. D., Noel, J. S., Hutson, A. M., Glass, R. I., Estes, M. K. & Prasad, B. V.(2004). Inter- and intra-genus structural variations in caliciviruses and their functional implications. J Virol 78, 6469–6479.[CrossRef] [Google Scholar]
  8. Chen, R., Neill, J. D., Estes, M. K. & Prasad, B. V.(2006). X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. Proc Natl Acad Sci U S A 103, 8048–8053.[CrossRef] [Google Scholar]
  9. Cooke, B. D.(2002). Rabbit haemorrhagic disease: field epidemiology and the management of wild rabbit populations. Rev Sci Tech 21, 347–358. [Google Scholar]
  10. Coyne, K. P., Gaskell, R. M., Dawson, S., Porter, C. J. & Radford, A. D.(2007). Evolutionary mechanisms of persistence and diversification of a calicivirus within endemically infected natural host populations. J Virol 81, 1961–1971.[CrossRef] [Google Scholar]
  11. Drummond, A. J. & Rambaut, A.(2007).beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214[CrossRef] [Google Scholar]
  12. Drummond, A. J., Nicholls, G. K., Rodrigo, A. G. & Solomon, W.(2002). Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161, 1307–1320. [Google Scholar]
  13. Drummond, A. J., Pybus, O. G., Rambaut, A., Forsberg, R. & Rodrigo, A. G.(2003). Measurably evolving populations. Trends Ecol Evol 18, 481–488.[CrossRef] [Google Scholar]
  14. Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A.(2006). Relaxed phylogenetics and dating with confidence. PLoS Biol 4, e88[CrossRef] [Google Scholar]
  15. Efron, B., Halloran, E. & Holmes, S.(1996). Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci U S A 93, 13429–13434.[CrossRef] [Google Scholar]
  16. Felsenstein, J.(1978). Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27, 401–410.[CrossRef] [Google Scholar]
  17. Fischer, L., Le Gros, F. X., Mason, P. W. & Paoletti, E.(1997). A recombinant canarypox virus protects rabbits against a lethal rabbit hemorrhagic disease virus (RHDV) challenge. Vaccine 15, 90–96.[CrossRef] [Google Scholar]
  18. Forrester, N. L., Boag, B., Moss, S. R., Turner, S. L., Trout, R. C., White, P. J., Hudson, P. J. & Gould, E. A.(2003). Long-term survival of New Zealand rabbit haemorrhagic disease virus RNA in wild rabbits, revealed by RT-PCR and phylogenetic analysis. J Gen Virol 84, 3079–3086.[CrossRef] [Google Scholar]
  19. Forrester, N. L., Abubakr, M. I., Abu Elzein, E. M., al Afaleq, A. I., Housawi, F. M., Moss, S. R., Turner, S. L. & Gould, E. A.(2006). Phylogenetic analysis of rabbit haemorrhagic disease virus strains from the Arabian Peninsula: did RHDV emerge simultaneously in Europe and Asia? Virology 344, 277–282.[CrossRef] [Google Scholar]
  20. Forrester, N. L., Moss, S. R., Turner, S. L., Schirrmeier, H. & Gould, E. A.(2008). Recombination in rabbit haemorrhagic disease virus: possible impact on evolution and epidemiology. Virology 376, 390–396.[CrossRef] [Google Scholar]
  21. Gall, A. & Schirrmeier, H.(2006). Persistence of rabbit haemorrhagic disease virus genome on vaccinated rabbits after experimental infection. J Vet Med B Infect Dis Vet Public Health 53, 358–362.[CrossRef] [Google Scholar]
  22. Gould, A. R., Kattenbelt, J. A., Lenghaus, C., Morrissy, C., Chamberlain, T., Collins, B. J. & Westbury, H. A.(1997). The complete nucleotide sequence of rabbit haemorrhagic disease virus (Czech strain V351): use of the polymerase chain reaction to detect replication in Australian vertebrates and analysis of viral population sequence variation. Virus Res 47, 7–17.[CrossRef] [Google Scholar]
  23. Grenfell, B. T., Pybus, O. G., Gog, J. R., Wood, J. L., Daly, J. M., Mumford, J. A. & Holmes, E. C.(2004). Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332.[CrossRef] [Google Scholar]
  24. Haydon, D. T., Bastos, A. D., Knowles, N. J. & Samuel, A. R.(2001). Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. Genetics 157, 7–15. [Google Scholar]
  25. Holmes, E. C.(2003). Molecular clocks and the puzzle of RNA virus origins. J Virol 77, 3893–3897.[CrossRef] [Google Scholar]
  26. Holmes, E. C. & Rambaut, A.(2004). Viral evolution and the emergence of SARS coronavirus. Philos Trans R Soc Lond B Biol Sci 359, 1059–1065.[CrossRef] [Google Scholar]
  27. Lebas, F., Coudert, P., de Rochambeau, H. & Thébault, R. G.,(1997). The rabbit; husbandry, health and production. FAO Animal Production and Health Series, no. 21. http://www.fao.org/docrep/t1690E/t1690e00.htm.
  28. Le Gall-Reculé, G., Zwingelstein, F., Laurent, S., de Boisséson, C., Portejoie, Y. & Rasschaert, D.(2003). Phylogenetic analysis of rabbit haemorrhagic disease virus in France between 1993 and 2000, and the characterisation of RHDV antigenic variants. Arch Virol 148, 65–81.[CrossRef] [Google Scholar]
  29. Marchandeau, S., Le Gall-Reculé, G., Bertagnoli, S., Aubineau, J., Botti, G. & Lavazza, A.(2005). Serological evidence for a non-protective RHDV-like virus. Vet Res 36, 53–62.[CrossRef] [Google Scholar]
  30. Martínez, M. A., Dopazo, J., Hernández, J., Mateu, M. G., Sobrino, F., Domingo, E. & Knowles, N. J.(1992). Evolution of the capsid protein genes of foot-and-mouth disease virus: antigenic variation without accumulation of amino acid substitutions over six decades. J Virol 66, 3557–3565. [Google Scholar]
  31. Matthee, C. A., van Vuuren, B. J., Bell, D. & Robinson, T. J.(2004). A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst Biol 53, 433–447.[CrossRef] [Google Scholar]
  32. McIntosh, M. T., Behan, S. C., Mohamed, F. M., Lu, Z., Moran, K. E., Burrage, T. G., Neilan, J. G., Ward, G. B., Botti, G. & other authors(2007). A pandemic strain of calicivirus threatens rabbit industries in the Americas. Virol J 4, 96[CrossRef] [Google Scholar]
  33. Meyers, G., Wirblich, C. & Thiel, H. J.(1991). Genomic and subgenomic RNAs of rabbit hemorrhagic disease virus are both protein-linked and packaged into particles. Virology 184, 677–686.[CrossRef] [Google Scholar]
  34. Moss, S. R., Turner, S. L., Trout, R. C., White, P. J., Hudson, P. J., Desai, A., Armesto, M., Forrester, N. L. & Gould, E. A.(2002). Molecular epidemiology of Rabbit haemorrhagic disease virus. J Gen Virol 83, 2461–2467. [Google Scholar]
  35. Nielsen, R. & Yang, Z.(1998). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148, 929–936. [Google Scholar]
  36. Nilsson, M., Hedlund, K. O., Thorhagen, M., Larson, G., Johansen, K., Ekspong, A. & Svensson, L.(2003). Evolution of human calicivirus RNA in vivo: accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype. J Virol 77, 13117–13124.[CrossRef] [Google Scholar]
  37. Ohlinger, V. F., Haas, B., Meyers, G., Weiland, F. & Thiel, H. J.(1990). Identification and characterization of the virus causing rabbit hemorrhagic disease. J Virol 64, 3331–3336. [Google Scholar]
  38. Rambaut, A.(2000). Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16, 395–399.[CrossRef] [Google Scholar]
  39. Rasschaert, D., Huguet, S., Madelaine, M. F. & Vautherot, J. F.(1995). Sequence and genomic organization of a rabbit hemorrhagic disease virus isolated from a wild rabbit. Virus Genes 9, 121–132.[CrossRef] [Google Scholar]
  40. Schirrmeier, H., Reimann, I., Köllner, B. & Granzow, H.(1999). Pathogenic, antigenic and molecular properties of rabbit haemorrhagic disease virus (RHDV) isolated from vaccinated rabbits: detection and characterization of antigenic variants. Arch Virol 144, 719–735.[CrossRef] [Google Scholar]
  41. Shapiro, B., Rambaut, A. & Drummond, A. J.(2005). Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23, 7–9.[CrossRef] [Google Scholar]
  42. Sheridan, I., Pybus, O. G., Holmes, E. C. & Klenerman, P.(2004). High-resolution phylogenetic analysis of hepatitis C virus adaptation and its relationship to disease progression. J Virol 78, 3447–3454.[CrossRef] [Google Scholar]
  43. Stamatakis, A.(2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of Taxa and mixed models. Bioinformatics 22, 2688–2690.[CrossRef] [Google Scholar]
  44. Stamatakis, A., Hoover, P. & Rougemont, J.(2008). A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 57, 758–771.[CrossRef] [Google Scholar]
  45. Tian, L., Liao, J., Li, J. W., Zhou, W. R., Zhang, X. L. & Wang, H. N.(2007). Isolation and identification of a non-haemagglutinating strain of rabbit hemorrhagic disease virus from China and sequence analysis for the VP60 Gene. Virus Genes 35, 745–752.[CrossRef] [Google Scholar]
  46. Wirblich, C., Meyers, G., Ohlinger, V. F., Capucci, L., Eskens, U., Haas, B. & Thiel, H. J.(1994). European brown hare syndrome virus: relationship to rabbit hemorrhagic disease virus and other caliciviruses. J Virol 68, 5164–5173. [Google Scholar]
  47. Yang, Z.(1997).paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556. [Google Scholar]
  48. Yang, Z. & Bielawski, J. P.(2000). Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15, 496–503.[CrossRef] [Google Scholar]
  49. Yang, Z., Nielsen, R., Goldman, N. & Pedersen, A.-M.(2000). Codon substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431–449. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error