1887

Abstract

Three ‘triple gene block’ proteins known as TGBp1, TGBp2 and TGBp3 are required for cell-to-cell movement of plant viruses belonging to a number of genera including . Hordeiviral TGBp1 interacts with viral genomic RNAs to form ribonucleoprotein (RNP) complexes competent for translocation between cells through plasmodesmata and over long distances via the phloem. Binding of hordeivirus TGBp1 to RNA involves two protein regions, the C-terminal NTPase/helicase domain and the N-terminal extension region. This study demonstrated that the extension region of hordeivirus TGBp1 consists of two structurally and functionally distinct domains called the N-terminal domain (NTD) and the internal domain (ID). In agreement with secondary structure predictions, analysis of circular dichroism spectra of the isolated NTD and ID demonstrated that the NTD represents a natively unfolded protein domain, whereas the ID has a pronounced secondary structure. Both the NTD and ID were able to bind ssRNA non-specifically. However, whilst the NTD interacted with ssRNA non-cooperatively, the ID bound ssRNA in a cooperative manner. Additionally, both domains bound dsRNA. The NTD and ID formed low-molecular-mass oligomers, whereas the ID also gave rise to high-molecular-mass complexes. The isolated ID was able to interact with both the NTD and the C-terminal NTPase/helicase domain in solution. These data demonstrate that the hordeivirus TGBp1 has three RNA-binding domains and that interaction between these structural units can provide a basis for remodelling of viral RNP complexes at different steps of cell-to-cell and long-distance transport of virus infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.013862-0
2009-12-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/12/3022.html?itemId=/content/journal/jgv/10.1099/vir.0.013862-0&mimeType=html&fmt=ahah

References

  1. Adler, A. J., Greenfield, N. J. & Fasman, G. D. ( 1973; ). Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol 27, 675–735.
    [Google Scholar]
  2. Atabekov, J. G., Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V. & Poljakov, V. Y. ( 2000; ). The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271, 259–263.[CrossRef]
    [Google Scholar]
  3. Bae, S. H., Kim, J. A., Choi, E., Lee, K. H., Kang, H. Y., Kim, H. D., Kim, J. H., Bae, K. H., Cho, Y. & other authors ( 2001; ). Tripartite structure of Saccharomyces cerevisiae Dna2 helicase/endonuclease. Nucleic Acids Res 29, 3069–3079.[CrossRef]
    [Google Scholar]
  4. Barilla, D., Rosenberg, M. F., Nobbmann, U. & Hayes, F. ( 2005; ). Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J 24, 1453–1464.[CrossRef]
    [Google Scholar]
  5. Beck, D. L., Guilford, P. J., Voot, D. M., Andersen, M. T. & Forster, R. L. ( 1991; ). Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology 183, 695–702.[CrossRef]
    [Google Scholar]
  6. Bleykasten, C., Gilmer, D., Guilley, H., Richards, K. E. & Jonard, G. ( 1996; ). Beet necrotic yellow vein virus 42 kDa triple gene block protein binds nucleic acid in vitro. J Gen Virol 77, 889–897.[CrossRef]
    [Google Scholar]
  7. Boevink, P. & Oparka, K. J. ( 2005; ). Virus–host interactions during movement processes. Plant Physiol 138, 1815–1821.[CrossRef]
    [Google Scholar]
  8. Brakke, M. K., Ball, E. M. & Langenberg, W. G. ( 1988; ). A non-capsid protein associated with unencapsidated virus RNA in barley infected with barley stripe mosaic virus. J Gen Virol 69, 481–491.[CrossRef]
    [Google Scholar]
  9. Chapman, S., Hills, G., Watts, J. & Baulcombe, D. ( 1992; ). Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology 191, 223–230.[CrossRef]
    [Google Scholar]
  10. Cheng, J., Randall, A., Sweredoski, M. & Baldi, P. ( 2005; ). scratch: a protein structure and structural feature prediction server. Nucleic Acids Res 33, W72–W76.[CrossRef]
    [Google Scholar]
  11. Corchero, J. L., Viaplana, E., Benito, A. & Villaverde, A. ( 1996; ). The position of the heterologous domain can influence the solubility and proteolysis of β-galactosidase fusion proteins in E. coli. J Biotechnol 48, 191–200.[CrossRef]
    [Google Scholar]
  12. Donald, R. G., Lawrence, D. M. & Jackson, A. O. ( 1997; ). The barley stripe mosaic virus 58-kilodalton β(b) protein is a multifunctional RNA binding protein. J Virol 71, 1538–1546.
    [Google Scholar]
  13. Epel, B. L. ( 2009; ). Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host β-1,3-glucanases. Semin Cell Dev Biol in press
    [Google Scholar]
  14. Evdokimova, V. M., Wei, C. L., Sitikov, A. S., Simonenko, P. N., Lazarev, O. A., Vasilenko, K. S., Ustinov, V. A., Hershey, J. W. & Ovchinnikov, L. P. ( 1995; ). The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y-box binding transcription factor family. J Biol Chem 270, 3186–3192.[CrossRef]
    [Google Scholar]
  15. Fink, A. L. ( 2005; ). Natively unfolded proteins. Curr Opin Struct Biol 15, 35–41.[CrossRef]
    [Google Scholar]
  16. Garnier, J., Osguthorpe, D. J. & Robson, B. ( 1978; ). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120, 97–120.[CrossRef]
    [Google Scholar]
  17. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. & Blinov, V. M. ( 1989; ). Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res 17, 4713–4730.[CrossRef]
    [Google Scholar]
  18. Greenfield, N. & Fasman, G. D. ( 1969; ). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116.[CrossRef]
    [Google Scholar]
  19. Haupt, S., Cowan, G. H., Zeigler, A., Roberts, A. G., Oparka, K. J. & Torrance, L. ( 2005; ). Two plant–viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17, 164–181.[CrossRef]
    [Google Scholar]
  20. Herzog, E., Hemmer, O., Hauser, S., Meyer, G., Bouzoubaa, S. & Fritsch, C. ( 1998; ). Identification of genes involved in replication and movement of peanut clump virus. Virology 248, 312–322.[CrossRef]
    [Google Scholar]
  21. Jackson, A. O., Lim, H.-S., Bragg, J., Ganesan, U. & Lee, M. Y. ( 2009; ). Hordeivirus replication, movement, and pathogenesis. Annu Rev Phytopathol 47, 385–422.[CrossRef]
    [Google Scholar]
  22. Johnson, W. C., Jr ( 1988; ). Secondary structure of proteins through circular dichroism spectroscopy. Annu Rev Biophys Biophys Chem 17, 145–166.[CrossRef]
    [Google Scholar]
  23. Kalinina, N. O., Fedorkin, O. N., Samuilova, O. V., Maiss, E., Korpela, T., Morozov, S. Yu. & Atabekov, J. G. ( 1996; ). Expression and biochemical analyses of the recombinant potato virus X 25K movement protein. FEBS Lett 397, 75–78.[CrossRef]
    [Google Scholar]
  24. Kalinina, N. O., Rakitina, D. A., Yelina, N. E., Zamyatnin, A. A., Jr, Stroganova, T. A., Klinov, D. V., Prokhorov, V. V., Ustinova, S. V., Chernov, B. K. & other authors ( 2001; ). RNA-binding properties of the 63 kDa protein encoded by the triple gene block of poa semilatent hordeivirus. J Gen Virol 82, 2569–2578.
    [Google Scholar]
  25. Kalinina, N. O., Rakitina, D. V., Solovyev, A. G., Schiemann, J. & Morozov, S. Y. ( 2002; ). RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296, 321–329.[CrossRef]
    [Google Scholar]
  26. Karpova, O. V., Zayakina, O. V., Arkhipenko, M. A., Sheval, E. V., Kiselyova, O. I., Poljakov, V. Yu., Yaminsky, I. V., Rodionova, N. P. & Atabekov, J. G. ( 2006; ). Potato virus RNA-mediated assembly of single-tailed ternary complexes ‘coat protein–RNA–movement protein’. J Gen Virol 87, 2731–2740.[CrossRef]
    [Google Scholar]
  27. Kiselyova, O. I., Yaminsky, I. V., Karpova, O. V., Rodionova, N. P., Kozlovsky, S. V., Arkhipenko, M. V. & Atabekov, J. G. ( 2003; ). AFM study of potato virus X disassembly induced by movement protein. J Mol Biol 332, 321–325.[CrossRef]
    [Google Scholar]
  28. Kloks, C. P., Spronk, C. A., Lasonder, E., Hoffmann, A., Vuister, G. W., Grzesiek, S. & Hilbers, C. W. ( 2002; ). The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. J Mol Biol 316, 317–326.[CrossRef]
    [Google Scholar]
  29. Leshchiner, A. D., Solovyev, A. G., Morozov, S. Yu. & Kalinina, N. O. ( 2006; ). A minimal region in the NTPase/helicase domain of the TGBp1 plant virus movement protein is responsible for ATPase activity and cooperative RNA binding. J Gen Virol 87, 3087–3095.[CrossRef]
    [Google Scholar]
  30. Lim, H. S., Bragg, J. N., Ganesan, U., Lawrence, D. M., Yu, J., Isogai, M., Hammond, J. & Jackson, A. O. ( 2008; ). Triple gene block protein interactions involved in movement of Barley stripe mosaic virus. J Virol 82, 4991–5006.[CrossRef]
    [Google Scholar]
  31. Longhi, S., Receveur-Bréchot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S. & Canard, B. ( 2003; ). The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278, 18638–18648.[CrossRef]
    [Google Scholar]
  32. Lucas, W. J. ( 2006; ). Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344, 169–184.[CrossRef]
    [Google Scholar]
  33. Marcos, J. F., Vilar, M., Pérez-Payá, E. & Pallás, V. ( 1999; ). In vivo detection, RNA-binding properties and characterization of the RNA-binding domain of the p7 putative movement protein from carnation mottle carmovirus (CarMV). Virology 255, 354–365.[CrossRef]
    [Google Scholar]
  34. Matsumoto, K. & Wolffe, A. P. ( 1998; ). Gene regulation by Y-box proteins: coupling control of transcription and translation. Trends Cell Biol 8, 318–323.[CrossRef]
    [Google Scholar]
  35. Mayer, O., Rajkowitsch, L., Lorenz, C., Konrat, R. & Schroeder, R. ( 2007; ). RNA chaperone activity and RNA-binding properties of the E. coli protein StpA. Nucleic Acids Res 35, 1257–1269.[CrossRef]
    [Google Scholar]
  36. Morozov, S. Yu. & Solovyev, A. G. ( 2003; ). Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84, 1351–1366.[CrossRef]
    [Google Scholar]
  37. Namba, K. ( 2001; ). Roles of partly unfolded conformations in macromolecular self-assembly. Genes Cells 6, 1–12.[CrossRef]
    [Google Scholar]
  38. O'Reilly, E. K., Tang, N., Ahlquist, P. & Kao, C. C. ( 1995; ). Biochemical and genetic analyses of the interaction between the helicase-like and polymerase-like proteins of the brome mosaic virus. Virology 214, 59–71.[CrossRef]
    [Google Scholar]
  39. Petty, I. T. & Jackson, A. O. ( 1990; ). Mutational analysis of barley stripe mosaic virus RNA beta. Virology 179, 712–718.[CrossRef]
    [Google Scholar]
  40. Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., Silman, I. & Sussman, J. L. ( 2005; ). FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21, 3435–3438.[CrossRef]
    [Google Scholar]
  41. Rajkowitsch, L., Chen, D., Stampfl, S., Semrad, K., Waldsich, C., Mayer, O., Jantsch, M. F., Konrat, R., Bläsi, U. & Schroeder, R. ( 2007; ). RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4, 118–130.[CrossRef]
    [Google Scholar]
  42. Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., Zayakina, O. V., Arkhipenko, M. V. & Atabekov, J. G. ( 2003; ). Linear remodeling of helical virus by movement protein binding. J Mol Biol 333, 565–572.[CrossRef]
    [Google Scholar]
  43. Russell, R. ( 2008; ). RNA misfolding and the action of chaperones. Front Biosci 13, 1–20.[CrossRef]
    [Google Scholar]
  44. Santa Cruz, S., Roberts, A. G., Prior, D. A. M., Chapman, S. & Oparka, K. J. ( 1998; ). Cell-to-cell and phloem-mediated transport of potato virus X: the role of virions. Plant Cell 10, 495–510.[CrossRef]
    [Google Scholar]
  45. Savenkov, E. I., Germundsson, A., Zamyatnin, A. A., Jr, Sandgren, M. & Valkonen, J. P. ( 2003; ). Potato mop-top virus: the coat protein-encoding RNA and the gene for cysteine-rich protein are dispensable for systemic virus movement in Nicotiana benthamiana. J Gen Virol 84, 1001–1005.[CrossRef]
    [Google Scholar]
  46. Schlotmann, M. & Beyreuther, K. ( 1979; ). Degradation of the DNA-binding domain of wild-type and i−d lac repressors in Escherichia coli. Eur J Biochem 95, 39–49.[CrossRef]
    [Google Scholar]
  47. Schmitt, C., Balmori, E., Jonard, G., Richards, K. E. & Guilley, H. ( 1992; ). In vitro mutagenesis of biologically active transcripts of beet necrotic yellow vein virus RNA 2: evidence that a domain of the 75-kDa readthrough protein is important for efficient virus assembly. Proc Natl Acad Sci U S A 89, 5715–5719.[CrossRef]
    [Google Scholar]
  48. Schmitz, S. K. ( 1990; ). An Introduction to Dynamic Light Scattering by Macromolecules. New York: Academic Press.
  49. Solovyev, A. G., Savenkov, E. I., Agranovsky, A. A. & Morozov, S. Y. ( 1996; ). Comparisons of the genomic cis-elements and coding regions in RNAβ components of the hordeiviruses barley stripe mosaic virus, lychnis ringspot virus, and poa semilatent virus. Virology 219, 9–18.[CrossRef]
    [Google Scholar]
  50. Sreerama, N. & Woody, R. W. ( 2004; ). Computation and analysis of protein circular dichroism spectra. Methods Enzymol 383, 318–351.
    [Google Scholar]
  51. Tamada, T., Schmitt, C., Saito, M., Guilley, H., Richards, K. & Jonard, G. ( 1996; ). High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: a KTER motif is important for efficient transmission of the virus by Polymyxa betae. J Gen Virol 77, 1359–1367.[CrossRef]
    [Google Scholar]
  52. Tompa, P. & Csermely, P. ( 2004; ). The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18, 1169–1175.[CrossRef]
    [Google Scholar]
  53. Tönges, L., Lingor, P., Egle, R., Dietz, G. P., Fahr, A. & Bähr, M. ( 2006; ). Stearylated octaarginine and artificial virus-like particles for transfection of siRNA into primary rat neurons. RNA 12, 1431–1438.[CrossRef]
    [Google Scholar]
  54. Torrance, L., Lukhovitskaya, N. I., Schepetilnikov, M. V., Cowan, G. H., Ziegler, A. & Savenkov, E. I. ( 2009; ). Unusual long-distance movement strategies of Potato mop-top virus RNAs in Nicotiana benthamiana. Mol Plant Microbe Interact 22, 381–390.[CrossRef]
    [Google Scholar]
  55. Uversky, V. N. ( 2002; ). Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11, 739–756.[CrossRef]
    [Google Scholar]
  56. Yelina, N. E., Erokhina, T. N., Lukhovitskaya, N. I., Minina, E. A., Schepetilnikov, M. V., Lesemann, D.-E., Schiemann, J., Solovyev, A. G. & Morozov, S. Yu. ( 2005; ). Localization of Poa semilatent virus cysteine-rich protein in peroxisomes is dispensable for its ability to suppress RNA silencing. J Gen Virol 86, 479–489.[CrossRef]
    [Google Scholar]
  57. Zamyatnin, A. A., Jr, Solovyev, A. G., Savenkov, E. I., Germudson, A., Sandgren, M., Valkonen, J. P. T. & Morozov, S. Yu. ( 2004; ). Transient coexpression of individual genes encoded by the triple gene block of potato mop-top virus reveals requirements for TGBp1 trafficking. Mol Plant Microbe Interact 17, 921–930.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.013862-0
Loading
/content/journal/jgv/10.1099/vir.0.013862-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error