1887

Abstract

SARS coronavirus (SARS-CoV) is known to efficiently suppress the induction of antiviral type I interferons (IFN-/) in non-lymphatic cells through inhibition of the transcription factor IRF-3. Plasmacytoid dendritic cells, in contrast, respond to infection with production of high levels of IFNs. Here, we show that pretreatment of non-lymphatic cells with small amounts of IFN- (IFN priming) partially overturns the block in IFN induction imposed by SARS-CoV. IFN priming combined with SARS-CoV infection substantially induced genes for IFN induction, IFN signalling, antiviral effector proteins, ubiquitination and ISGylation, antigen presentation and other cytokines and chemokines, whereas each individual treatment had no major effect. Curiously, however, despite this typical IFN response, neither IRF-3 nor IRF-7 was transported to the nucleus as a sign of activation. Taken together, our results suggest that (i) IFN, as it is produced by plasmacytoid dendritic cells, could enable tissue cells to launch a host response to SARS-CoV, (ii) IRF-3 and IRF-7 may be active at subdetectable levels, and (iii) SARS-CoV does not activate IRF-7.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.013599-0
2009-11-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/11/2686.html?itemId=/content/journal/jgv/10.1099/vir.0.013599-0&mimeType=html&fmt=ahah

References

  1. Billecocq, A., Spiegel, M., Vialat, P., Kohl, A., Weber, F., Bouloy, M. & Haller, O. ( 2004; ). NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol 78, 9798–9806.[CrossRef]
    [Google Scholar]
  2. Caillaud, A., Hovanessian, A. G., Levy, D. E. & Marie, I. J. ( 2005; ). Regulatory serine residues mediate phosphorylation-dependent and phosphorylation-independent activation of interferon regulatory factor 7. J Biol Chem 280, 17671–17677.[CrossRef]
    [Google Scholar]
  3. Cameron, M. J., Ran, L., Xu, L., Danesh, A., Bermejo-Martin, J. F., Cameron, C. M., Muller, M. P., Gold, W. L., Richardson, S. E. & other authors ( 2007; ). Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in severe acute respiratory syndrome (SARS) patients. J Virol 81, 8692–8706.[CrossRef]
    [Google Scholar]
  4. Cervantes-Barragan, L., Zust, R., Weber, F., Spiegel, M., Lang, K. S., Akira, S., Thiel, V. & Ludewig, B. ( 2007; ). Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood 109, 1131–1137.
    [Google Scholar]
  5. Cheung, C. Y., Poon, L. L., Ng, I. H., Luk, W., Sia, S. F., Wu, M. H., Chan, K. H., Yuen, K. Y., Gordon, S. & other authors ( 2005; ). Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 79, 7819–7826.[CrossRef]
    [Google Scholar]
  6. Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H. & Doerr, H. W. ( 2003; ). Treatment of SARS with human interferons. Lancet 362, 293–294.[CrossRef]
    [Google Scholar]
  7. Clement, J. F., Bibeau-Poirier, A., Gravel, S. P., Grandvaux, N., Bonneil, E., Thibault, P., Meloche, S. & Servant, M. J. ( 2008; ). Phosphorylation of IRF-3 on Ser 339 generates a hyperactive form of IRF-3 through regulation of dimerization and CBP association. J Virol 82, 3984–3996.[CrossRef]
    [Google Scholar]
  8. Collins, S. E., Noyce, R. S. & Mossman, K. L. ( 2004; ). Innate cellular response to virus particle entry requires IRF3 but not virus replication. J Virol 78, 1706–1717.[CrossRef]
    [Google Scholar]
  9. de Lang, A., Baas, T., Teal, T., Leijten, L. M., Rain, B., Osterhaus, A. D., Haagmans, B. L. & Katze, M. G. ( 2007; ). Functional genomics highlights differential induction of antiviral pathways in the lungs of SARS-CoV infected macaques. PLoS Pathog 3, e112 [CrossRef]
    [Google Scholar]
  10. Denison, M. R. ( 2004; ). Severe acute respiratory syndrome coronavirus pathogenesis, disease and vaccines: an update. Pediatr Infect Dis J 23, S207–S214.[CrossRef]
    [Google Scholar]
  11. Devaraj, S. G., Wang, N., Chen, Z., Chen, Z., Tseng, M., Barretto, N., Lin, R., Peters, C. J., Tseng, C. T. & other authors ( 2007; ). Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 282, 32208–32221.[CrossRef]
    [Google Scholar]
  12. Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L. & other authors ( 2003; ). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348, 1967–1976.[CrossRef]
    [Google Scholar]
  13. Erlandsson, L., Blumenthal, R., Eloranta, M. L., Engel, H., Alm, G., Weiss, S. & Leanderson, T. ( 1998; ). Interferon-β is required for interferon-α production in mouse fibroblasts. Curr Biol 8, 223–226.[CrossRef]
    [Google Scholar]
  14. Frieman, M., Heise, M. & Baric, R. ( 2008; ). SARS coronavirus and innate immunity. Virus Res 133, 101–112.[CrossRef]
    [Google Scholar]
  15. Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. ( 1977; ). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59–74.[CrossRef]
    [Google Scholar]
  16. Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Zhan, J., Wang, S. & other authors ( 2005; ). Multiple organ infection and the pathogenesis of SARS. J Exp Med 202, 415–424.[CrossRef]
    [Google Scholar]
  17. Haagmans, B. L., Kuiken, T., Martina, B. E., Fouchier, R. A., Rimmelzwaan, G. F., Van Amerongen, G., Van Riel, D., De Jong, T., Itamura, S. & other authors ( 2004; ). Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat Med 10, 290–293.[CrossRef]
    [Google Scholar]
  18. Habjan, M., Penski, N., Spiegel, M. & Weber, F. ( 2008; ). T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J Gen Virol 89, 2157–2166.[CrossRef]
    [Google Scholar]
  19. Hiscott, J. ( 2007; ). Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 282, 15325–15329.[CrossRef]
    [Google Scholar]
  20. Honda, K. & Taniguchi, T. ( 2006; ). IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6, 644–658.[CrossRef]
    [Google Scholar]
  21. Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., Shimada, N., Ohba, Y., Takaoka, A. & other authors ( 2005; ). IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777.[CrossRef]
    [Google Scholar]
  22. Iwamura, T., Yoneyama, M., Yamaguchi, K., Suhara, W., Mori, W., Shiota, K., Okabe, Y., Namiki, H. & Fujita, T. ( 2001; ). Induction of IRF-3/-7 kinase and NF-κB in response to double-stranded RNA and virus infection: common and unique pathways. Genes Cells 6, 375–388.[CrossRef]
    [Google Scholar]
  23. Kamitani, W., Narayanan, K., Huang, C., Lokugamage, K., Ikegami, T., Ito, N., Kubo, H. & Makino, S. ( 2006; ). Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc Natl Acad Sci U S A 103, 12885–12890.[CrossRef]
    [Google Scholar]
  24. Knoops, K., Kikkert, M., Worm, S. H., Zevenhoven-Dobbe, J. C., van der Meer, Y., Koster, A. J., Mommaas, A. M. & Snijder, E. J. ( 2008; ). SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6, e226 [CrossRef]
    [Google Scholar]
  25. Kopecky-Bromberg, S. A., Martinez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P. ( 2007; ). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81, 548–557.[CrossRef]
    [Google Scholar]
  26. Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A. & other authors ( 2003; ). A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348, 1953–1966.[CrossRef]
    [Google Scholar]
  27. Kuiken, T., Fouchier, R. A., Schutten, M., Rimmelzwaan, G. F., van Amerongen, G., van Riel, D., Laman, J. D., de Jong, T., van Doornum, G. & other authors ( 2003; ). Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270.[CrossRef]
    [Google Scholar]
  28. Levy, D. E. & Darnell, J. E., Jr ( 2002; ). Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3, 651–662.[CrossRef]
    [Google Scholar]
  29. Marie, I., Durbin, J. E. & Levy, D. E. ( 1998; ). Differential viral induction of distinct interferon-α genes by positive feedback through interferon regulatory factor-7. EMBO J 17, 6660–6669.[CrossRef]
    [Google Scholar]
  30. Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C. T. & Makino, S. ( 2008; ). Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 82, 4471–4479.[CrossRef]
    [Google Scholar]
  31. Niwa, H., Yamamura, K. & Miyazaki, J. ( 1991; ). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.[CrossRef]
    [Google Scholar]
  32. Noyce, R. S., Collins, S. E. & Mossman, K. L. ( 2009; ). Differential modification of interferon regulatory factor 3 following virus particle entry. J Virol 83, 4013–4022.[CrossRef]
    [Google Scholar]
  33. Osterlund, P., Veckman, V., Siren, J., Klucher, K. M., Hiscott, J., Matikainen, S. & Julkunen, I. ( 2005; ). Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol 79, 9608–9617.[CrossRef]
    [Google Scholar]
  34. Peiris, J. S., Chu, C. M., Cheng, V. C., Chan, K. S., Hung, I. F., Poon, L. L., Law, K. I., Tang, B. S., Hon, T. Y. & other authors ( 2003a; ). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361, 1767–1772.[CrossRef]
    [Google Scholar]
  35. Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W. & other authors ( 2003b; ). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325.[CrossRef]
    [Google Scholar]
  36. Peiris, J. S., Guan, Y. & Yuen, K. Y. ( 2004; ). Severe acute respiratory syndrome. Nat Med 10, S88–S97.[CrossRef]
    [Google Scholar]
  37. Phipps-Yonas, H., Seto, J., Sealfon, S. C., Moran, T. M. & Fernandez-Sesma, A. ( 2008; ). Interferon-β pretreatment of conventional and plasmacytoid human dendritic cells enhances their activation by influenza virus. PLoS Pathog 4, e1000193 [CrossRef]
    [Google Scholar]
  38. Pichlmair, A. & Reis e Sousa, C. ( 2007; ). Innate recognition of viruses. Immunity 27, 370–383.[CrossRef]
    [Google Scholar]
  39. Roth-Cross, J. K., Martinez-Sobrido, L., Scott, E. P., Garcia-Sastre, A. & Weiss, S. R. ( 2007; ). Inhibition of the alpha/beta interferon response by mouse hepatitis virus at multiple levels. J Virol 81, 7189–7199.[CrossRef]
    [Google Scholar]
  40. Roth-Cross, J. K., Bender, S. J. & Weiss, S. R. ( 2008; ). Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia. J Virol 82, 9829–9838.[CrossRef]
    [Google Scholar]
  41. Sadler, A. J. & Williams, B. R. ( 2008; ). Interferon-inducible antiviral effectors. Nat Rev Immunol 8, 559–568.[CrossRef]
    [Google Scholar]
  42. Samuel, C. E. ( 2001; ). Antiviral actions of interferons. Clin Microbiol Rev 14, 778–809.[CrossRef]
    [Google Scholar]
  43. Sato, M., Suemori, H., Hata, N., Asagiri, M., Ogasawara, K., Nakao, K., Nakaya, T., Katsuki, M., Noguchi, S. & other authors ( 2000; ). Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13, 539–548.[CrossRef]
    [Google Scholar]
  44. Spiegel, M. & Weber, F. ( 2006; ). Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus. Virol J 3, 17 [CrossRef]
    [Google Scholar]
  45. Spiegel, M., Pichlmair, A., Martinez-Sobrido, L., Cros, J., Garcia-Sastre, A., Haller, O. & Weber, F. ( 2005; ). Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol 79, 2079–2086.[CrossRef]
    [Google Scholar]
  46. Stertz, S., Reichelt, M., Spiegel, M., Kuri, T., Martinez-Sobrido, L., Garcia-Sastre, A., Weber, F. & Kochs, G. ( 2007; ). The intracellular sites of early replication and budding of SARS-coronavirus. Virology 361, 304–315.[CrossRef]
    [Google Scholar]
  47. Stewart, W. E., II, Gosser, L. B. & Lockart, R. Z., Jr ( 1971; ). Priming: a nonantiviral function of interferon. J Virol 7, 792–801.
    [Google Scholar]
  48. Stroher, U., DiCaro, A., Li, Y., Strong, J. E., Aoki, F., Plummer, F., Jones, S. M. & Feldmann, H. ( 2004; ). Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-α. J Infect Dis 189, 1164–1167.[CrossRef]
    [Google Scholar]
  49. Suhara, W., Yoneyama, M., Kitabayashi, I. & Fujita, T. ( 2002; ). Direct involvement of CREB-binding protein/p300 in sequence-specific DNA binding of virus-activated interferon regulatory factor-3 holocomplex. J Biol Chem 277, 22304–22313.[CrossRef]
    [Google Scholar]
  50. Thiel, V. & Weber, F. ( 2008; ). Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev 19, 121–132.[CrossRef]
    [Google Scholar]
  51. Versteeg, G. A., Bredenbeek, P. J., van den Worm, S. H. & Spaan, W. J. ( 2007; ). Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. Virology 361, 18–26.[CrossRef]
    [Google Scholar]
  52. Wathelet, M. G., Orr, M., Frieman, M. B. & Baric, R. S. ( 2007; ). Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J Virol 81, 11620–11633.[CrossRef]
    [Google Scholar]
  53. Weaver, B. K., Kumar, K. P. & Reich, N. C. ( 1998; ). Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol Cell Biol 18, 1359–1368.
    [Google Scholar]
  54. Weber, F., Wagner, V., Rasmussen, S. B., Hartmann, R. & Paludan, S. R. ( 2006; ). Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80, 5059–5064.[CrossRef]
    [Google Scholar]
  55. WHO ( 2004; ). Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. http://www.who.int/csr/sars/country/table2004_04_21/en/index.html
  56. Yoneyama, M. & Fujita, T. ( 2007; ). Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem 282, 15315–15318.[CrossRef]
    [Google Scholar]
  57. Yoneyama, M. & Fujita, T. ( 2008; ). Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 29, 178–181.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.013599-0
Loading
/content/journal/jgv/10.1099/vir.0.013599-0
Loading

Data & Media loading...

vol. , part 11, pp. 2686–2694

Oligonucleotide primers used for RT-PCR analyses.

Global gene expression in IFN-primed and SARS-CoV-infected 293lp cells.

[ Single PDF file] (92 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error