Japanese encephalitis is characterized by profound neuronal destruction/dysfunction and concomitant microgliosis/astrogliosis. Although substantial activation of glia is observed in Japanese encephalitis virus (JEV)-induced Japanese encephalitis, the inflammatory responses and consequences of astrocytes and microglial activation after JEV infection are not fully understood. In this study, infection of cultured neurons/glia with JEV caused neuronal death and glial activation, as evidenced by morphological transformation, increased cell proliferation and elevated tumour necrosis factor (TNF)-, interleukin (IL)-1, IL-6 and RANTES (regulated upon activation, normal T-cell expressed and secreted) production. Replication-competent JEV caused all glial responses and neurotoxicity. However, replication-incompetent JEV lost these abilities, except for the ability to change microglial morphology. The bystander damage caused by activated glia also contributed to JEV-associated neurotoxicity. Microglia underwent morphological changes, increased cell proliferation and elevated TNF-, IL-1, IL-6 and RANTES expression in response to JEV infection. In contrast, IL-6 and RANTES expression, but no apparent morphological changes, proliferation or TNF-/IL-1 expression, was demonstrated in JEV-infected astrocytes. Supernatants of JEV-infected microglia, but not JEV-infected astrocytes, induced glial activation and triggered neuronal death. Antibody neutralization studies revealed that TNF- and IL-1, but not RANTES or IL-6, released by activated microglia appeared to play roles in JEV-associated neurotoxicity. In conclusion, following JEV infection, neuronal death was accompanied by concomitant microgliosis and astrogliosis, and neurotoxic mediators released by JEV-activated microglia, rather than by JEV-activated astrocytes, had the ability to amplify the microglial response and cause neuronal death.


Article metrics loading...

Loading full text...

Full text loading...



  1. Abraham, S. & Manjunath, R.(2006). Induction of classical and nonclassical MHC-I on mouse brain astrocytes by Japanese encephalitis virus. Virus Res 119, 216–220.[CrossRef] [Google Scholar]
  2. Bhowmick, S., Duseja, R., Das, S., Appaiahgiri, M. B., Vrati, S. & Basu, A.(2007). Induction of IP-10 (CXCL10) in astrocytes following Japanese encephalitis. Neurosci Lett 414, 45–50.[CrossRef] [Google Scholar]
  3. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M.(1990). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649–688.[CrossRef] [Google Scholar]
  4. Chao, C. C., Hu, S. & Peterson, P. K.(1995). Glia, cytokines, and neurotoxicity. Crit Rev Neurobiol 9, 189–205. [Google Scholar]
  5. Chaturvedi, U. C., Mathur, A., Tandon, P., Natu, S. M., Rajvanshi, S. & Tandon, H. O.(1979). Variable effect on peripheral blood leucocytes during JE virus infection of man. Clin Exp Immunol 38, 492–498. [Google Scholar]
  6. Chen, C. J., Liao, S. L., Kuo, M. D. & Wang, Y. M.(2000). Astrocytic alteration induced by Japanese encephalitis virus infection. Neuroreport 11, 1933–1937.[CrossRef] [Google Scholar]
  7. Chen, C. J., Chen, J. H., Chen, S. Y., Liao, S. L. & Raung, S. L.(2004). Upregulation of RANTES gene expression in neuroglia by Japanese encephalitis virus infection. J Virol 78, 12107–12119.[CrossRef] [Google Scholar]
  8. Das, S., Mishra, M. K., Ghosh, J. & Basu, A.(2008). Japanese encephalitis virus infection induces IL-18 and IL-1β in microglia and astrocytes: correlation with in vitro cytokine responsiveness of glial cells and subsequent neuronal death. J Neuroimmunol 195, 60–72.[CrossRef] [Google Scholar]
  9. Gao, H. M., Jiang, J., Wilson, B., Zhang, W., Hong, J. S. & Lin, B.(2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease. J Neurochem 81, 1285–1297.[CrossRef] [Google Scholar]
  10. Gehrmann, J., Matsumoto, Y. & Kreutzberg, G. W.(1995). Microglia: intrinsic immunoeffector cell of the brain. Brain Res Brain Res Rev 20, 269–287.[CrossRef] [Google Scholar]
  11. German, A. C., Myint, K. S. A., Mai, N. T. H., Pomeroy, I., Phu, N. H., Tzartos, J., Winter, P., Collett, J., Farrar, J. & other authors(2006). A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans R Soc Trop Med Hyg 100, 1135–1145.[CrossRef] [Google Scholar]
  12. Ghoshal, A., Das, S., Ghosh, S., Mishra, M. K., Sharma, V., Koli, P., Sen, E. & Basu, A.(2007). Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55, 483–496.[CrossRef] [Google Scholar]
  13. Giulian, D.(1993). Reactive glia as rivals in regulating neuronal survival. Glia 7, 102–110.[CrossRef] [Google Scholar]
  14. Hanisch, U. K.(2002). Microglia as a source and target of cytokines. Glia 40, 140–155.[CrossRef] [Google Scholar]
  15. Khanna, N., Agnihotri, M., Mathur, A. & Chaturvedi, U. C.(1991). Neutrophil chemotactic factor produced by Japanese encephalitis virus stimulated macrophages. Clin Exp Immunol 86, 299–303. [Google Scholar]
  16. Kong, L. Y., Wilson, B. C., McMillian, M. K., Bing, G., Hudson, P. M. & Hong, J. S.(1996). The effects of the HIV-1 envelope protein gp120 on the production of nitric oxide and proinflammatory cytokines in mixed glial cell cultures. Cell Immunol 172, 77–83.[CrossRef] [Google Scholar]
  17. Kreutzberg, G. W.(1996). Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19, 312–318.[CrossRef] [Google Scholar]
  18. Kumar, R., Mathur, A., Kumar, A., Sethi, G. D., Sharma, S. & Chaturvedi, U. C.(1990). Virological investigations of acute encephalopathy in India. Arch Dis Child 65, 1227–1230.[CrossRef] [Google Scholar]
  19. Liao, S. L., Raung, S. L. & Chen, C. J.(2002). Japanese encephalitis virus stimulates superoxide dismutase activity in rat glial cultures. Neurosci Lett 324, 133–136.[CrossRef] [Google Scholar]
  20. Mathur, A., Bharadwaj, M., Kulshreshtha, R., Rawat, S., Jain, A. & Chaturvedi, U. C.(1988). Immunopathological study of spleen during Japanese encephalitis virus infection in mice. Br J Exp Pathol 69, 423–432. [Google Scholar]
  21. Mishra, M. K. & Basu, A.(2008). Minocycline neuroprotects, reduces microglial activation, inhibits caspase 3 induction, and viral replication following Japanese encephalitis. J Neurochem 105, 1582–1595.[CrossRef] [Google Scholar]
  22. Mishra, M. K., Koli, P., Bhowmick, S. & Basu, A.(2007). Neuroprotection conferred by astrocytes is insufficient to protect animals from succumbing to Japanese encephalitis. Neurochem Int 50, 764–773.[CrossRef] [Google Scholar]
  23. Mishra, M. K., Kumawata, K. L. & Basu, A.(2008). Japanese encephalitis virus differentially modulates the induction of multiple pro-inflammatory mediators in human astrocytoma and astroglioma cell-lines. Cell Biol Int 32, 1506–1513.[CrossRef] [Google Scholar]
  24. Moore, S. & Thanos, S.(1996). The concept of microglia in relation to central nervous system disease and regeneration. Prog Neurobiol 48, 441–460.[CrossRef] [Google Scholar]
  25. Norenberg, M. D.(1994). Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53, 213–220.[CrossRef] [Google Scholar]
  26. Ovanesov, M. V., Sauder, C., Rubin, S. A., Richt, J., Nath, A., Carbone, K. M. & Pletnikov, M. V.(2006). Activation of microglia by Borna disease virus infection: in vitro study. J Virol 80, 12141–12148.[CrossRef] [Google Scholar]
  27. Perry, V. H. & Gordon, S.(1988). Macrophages and microglia in the nervous system. Trends Neurosci 11, 273–277.[CrossRef] [Google Scholar]
  28. Raung, S. L., Chen, S. Y., Liao, S. L., Chen, J. H. & Chen, C. J.(2005). Tyrosine kinase inhibitors attenuate Japanese encephalitis virus-induced neurotoxicity. Biochem Biophys Res Commun 327, 399–406.[CrossRef] [Google Scholar]
  29. Raung, S. L., Chen, S. Y., Liao, S. L., Chen, J. H. & Chen, C. J.(2007). Japanese encephalitis virus infection stimulates Src tyrosine kinase in neuron/glia. Neurosci Lett 419, 263–268.[CrossRef] [Google Scholar]
  30. Ravi, V., Parida, S., Desai, A., Chandramuki, A., Gourie-Devi, M. & Grau, G. E.(1997). Correlation of tumor necrosis factor levels in the serum and cerebrospinal fluid with clinical outcome in Japanese encephalitis patients. J Med Virol 51, 132–136.[CrossRef] [Google Scholar]
  31. Ridet, J. L., Malhotra, S. K., Privat, A. & Gage, F. H.(1997). Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20, 570–577.[CrossRef] [Google Scholar]
  32. Saxena, V., Mathur, A., Krishnani, N. & Dhole, T. N.(2008). Kinetics of cytokine profile during intraperitoneal inoculation of Japanese encephalitis virus in BALB/c mice model. Microbes Infect 10, 1210–1217.[CrossRef] [Google Scholar]
  33. Singh, A., Kulshreshtha, R. & Mathur, A.(2000). Secretion of the chemokine interleukin-8 during Japanese encephalitis virus infection. J Med Microbiol 49, 607–612. [Google Scholar]
  34. Swarup, V., Das, S., Ghosh, S. & Basu, A.(2007). Tumor necrosis factor receptor-1-induced neuronal death by TRADD contributes to the pathogenesis of Japanese encephalitis. J Neurochem 103, 771–783.[CrossRef] [Google Scholar]
  35. Swarup, V., Ghosh, J., Das, S. & Basu, A.(2008). Tumor necrosis factor receptor-associated death domain mediated neuronal death contributes to the glial activation and subsequent neuroinflammation in Japanese encephalitis. Neurochem Int 52, 1310–1321.[CrossRef] [Google Scholar]
  36. van Marle, G., Antony, J., Ostermann, H., Dunham, C., Hunt, T., Halliday, W., Maingat, F., Urbanowski, M. D., Hobman, T. & other authors(2007). West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J Virol 81, 10933–10949.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error