1887

Abstract

The 3′ untranslated region (3′UTR) of the dengue virus (DENV) genome contain several sequences required for translation, replication and cyclization processes. This region also binds cellular proteins such as La, polypyrimidine tract-binding protein (PTB), Y box-binding protein 1, poly(A)-binding protein and the translation initiation factor eEF-1. PTB is a cellular protein that interacts with the regulatory sequences of positive-strand RNA viruses such as several picornaviruses and hepatitis C virus. In the present report, it was demonstrated that PTB translocates from the nucleus to the cytoplasm during DENV infection. At 48 h post-infection, PTB, as well as the DENV proteins NS1 and NS3, were found to co-localize with the endoplasmic reticulum marker calnexin. Silencing of PTB expression inhibited virus translation and replication, whilst overexpression of PTB augmented these processes. Thus, these results provide evidence that, during infection, PTB moves from the nucleus to the cytoplasm and plays an important role in the DENV replicative cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.013433-0
2009-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/12/2893.html?itemId=/content/journal/jgv/10.1099/vir.0.013433-0&mimeType=html&fmt=ahah

References

  1. Ackermann M., Padmanabhan R. 2001; De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276:39926–39937 [CrossRef]
    [Google Scholar]
  2. Aizaki H., Choi K. S., Liu M., Li Y., Lai M. M. 2006; Polypyrimidine-tract-binding protein is a component of the HCV RNA replication complex and necessary for RNA synthesis. J Biomed Sci 13:469–480 [CrossRef]
    [Google Scholar]
  3. Ali N., Siddiqui A. 1995; Interaction of PTB protein with the 5′ noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J Virol 69:6367–6375
    [Google Scholar]
  4. Alvarez D. E., Lodeiro M. F., Ludueña S. J., Pietrasanta L. I., Gamarnik A. V. 2005a; Long-range RNA–RNA interactions circularize the dengue virus genome. J Virol 79:6631–6643 [CrossRef]
    [Google Scholar]
  5. Alvarez D. E., De Lella Escurra A. L., Fucito S., Gamarnik A. V. 2005b; Role of RNA structures present at the 3′UTR of dengue virus on translation, and viral replication. Virology 339:200–212 [CrossRef]
    [Google Scholar]
  6. Anwar A., Leong K. M., Ng M. L., Chu J. H., Garcia-Blanco M. A. 2009; The polypyrimidine tract binding protein is required for efficient dengue virus propagation and associates with the viral replication machinery. J Biol Chem 284:17021–17029 [CrossRef]
    [Google Scholar]
  7. Back S. H., Shin S. J., Jang S. K. 2002; Polypyrimidine tract-binding proteins are cleaved by caspase-3 during apoptosis. J Biol Chem 277:27200–27209 [CrossRef]
    [Google Scholar]
  8. Bredenbeek P. J., Kooi E. A., Lindenbach B., Huijkman N., Rice C. M., Spaan W. J. 2003; A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. J Gen Virol 84:1261–1268 [CrossRef]
    [Google Scholar]
  9. Brinton M. A., Dispoto J. H. 1988; Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA. Virology 162:290–299 [CrossRef]
    [Google Scholar]
  10. Brinton M. A., Fernandez A. V., Dispoto J. H. 1986; The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153:113–121 [CrossRef]
    [Google Scholar]
  11. Bushell M., Sarnow P. 2002; Hijacking the translation apparatus by RNA viruses. J Cell Biol 158:395–401 [CrossRef]
    [Google Scholar]
  12. Chang K.-S., Luo G. 2006; The polypyrimidine tract-binding protein (PTB) is required for efficient replication of hepatitis C virus (HCV) RNA. Virus Res 115:1–8 [CrossRef]
    [Google Scholar]
  13. Chen C. J., Kuo M. D., Chien L. J., Hsu S., Wang Y., Lin J. 1997; RNA–protein interactions: involvement of NS3, NS5, and 3′ noncoding regions of Japanese encephalitis virus genomic RNA. J Virol 71:3466–3473
    [Google Scholar]
  14. Clyde K., Harris E. 2006; RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 80:2170–2182 [CrossRef]
    [Google Scholar]
  15. Clyde K., Barrera J., Harris E. 2008; The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology 379:314–323 [CrossRef]
    [Google Scholar]
  16. Corver J., Lenches E., Smith K., Robison R. A., Sando T., Strauss E. G., Strauss J. H. 2003; Fine mapping of a cis -acting sequence element in yellow fever virus RNA that is required for RNA replication and cyclization. J Virol 77:2265–2270 [CrossRef]
    [Google Scholar]
  17. De Nova-Ocampo M., Villegas-Sepúlveda N., Del Angel R. M. 2002; Translation elongation-1 α , La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. Virology 295:337–347 [CrossRef]
    [Google Scholar]
  18. Domitrovich A. M., Diebel K. W., Ali N., Sarker S., Siddiqui A. 2005; Role of La autoantigen and polypyrimidine tract-binding protein in HCV replication. Virology 335:72–86 [CrossRef]
    [Google Scholar]
  19. Edgil D., Polacek C., Harris E. 2006; Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80:2976–2986 [CrossRef]
    [Google Scholar]
  20. Filomatori C. V., Lodeiro M. F., Alvarez D. E., Samsa M. M., Pietrasanta L., Gamarnik A. V. 2006; A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20:2238–2249 [CrossRef]
    [Google Scholar]
  21. García-Montalvo B. M., Medina F., Del Angel R. M. 2004; La protein binds to NS5 and NS3 and to the 5′ and 3′ ends of dengue 4 virus RNA. Virus Res 102:141–150 [CrossRef]
    [Google Scholar]
  22. Gould E., Clegg S. C. J. 1991; Growth, titration and purification of alphaviruses and flaviviruses. In Virology: a Practical Approach pp 43–48Edited by Mahy B. W. J. Oxford, UK: IRL Press;
    [Google Scholar]
  23. Grange T., Bouloy M., Girard M. 1985; Stable secondary structure at the 3′ end of the genome of yellow fever virus (17D vaccine strain). FEBS Lett 188:159–163 [CrossRef]
    [Google Scholar]
  24. Grover R., Ray P. S., Das S. 2008; Polypyrimidine tract binding protein regulates IRES-mediated translation of p53 isoforms. Cell Cycle 7:2189–2198 [CrossRef]
    [Google Scholar]
  25. Gutiérrez A. L., De Nova-Ocampo M., Racaniello V. R., Del Angel R. M. 1997; Attenuating mutations in the poliovirus 5′ untranslated regions alter its interaction with polypyrimidine tract-binding protein. J Virol 71:3826–3833
    [Google Scholar]
  26. Hahn C. S., Hahn Y. S., Rice C. M., Lee E., Dalgarno L., Strauss E. G., Strauss J. H. 1987; Conserved elements in the 3′ UTR of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198:33–41 [CrossRef]
    [Google Scholar]
  27. Hu Y., Fisette P. L., Denlinger L. C., Guadarrama A. G., Sommer J. A., Proctor R. A., Bertics P. J. 1998; Purinergic receptor modulation of lipopolysaccharide signaling and inducible nitric-oxide synthase expression in RAW 264.7 macrophages. J Biol Chem 273:27170–27175 [CrossRef]
    [Google Scholar]
  28. Jiang L., Yao H., Duan X., Lu X., Liu Y. 2009; Polypyrimidine tract-binding protein influences negative strand RNA synthesis of dengue virus. Biochem Biophys Res Commun 385:187–192 [CrossRef]
    [Google Scholar]
  29. Jones C. T., Patkar C. G., Kuhn R. J. 2005; Construction and applications of yellow fever virus replicons. Virology 331:247–259 [CrossRef]
    [Google Scholar]
  30. Kapoor M., Zhang L., Ramachandra M., Kusukawa J., Ebner K. E., Padmanabhan R. 1995; Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem 270:19100–19106 [CrossRef]
    [Google Scholar]
  31. Khromykh A. A., Varnavski A. N., Sedlak P. L., Westaway E. G. 2001; Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J Virol 75:4633–4440 [CrossRef]
    [Google Scholar]
  32. Knoch K. P., Schneider H., Ehehalt F., Wegbrod C., Altkruger A., Solimena M. 2006; PTB1 binds to the 5′-UTR of mRNA encoding proteins of the insulin secretory granules. Diabetologia 49:156–157
    [Google Scholar]
  33. Lindenbach B. D., Rice C. M. 1999; Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621
    [Google Scholar]
  34. Lindenbach B. D., Rice C. M. 2001; Flaviviridae : the viruses and their replication. In Fields Virology , 4th edn. pp 991–1041Edited by Knipe D. M., Howley. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  35. Lo M. K., Tilgner M., Bernand K. A., Shi P. Y. 2003; Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3′ untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication. J Virol 77:10004–10014 [CrossRef]
    [Google Scholar]
  36. Lodeiro M. F., Filomatori C. V., Gamarnik A. V. 2009; Structural and functional studies of the promoter element for dengue virus RNA replication. J Virol 83:993–1008 [CrossRef]
    [Google Scholar]
  37. Luo D., Xu T., Watson R. P., Scherer-Becker D., Sampath A., Jahnke W., Yeong S. S., Wang C. H., Lim S. P. other authors 2008; Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J 27:3209–3219 [CrossRef]
    [Google Scholar]
  38. Mackenzie J. M., Khromykh A. A., Jones M. K., Westaway E. G. 1998; Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245:203–215 [CrossRef]
    [Google Scholar]
  39. Meerovitch K., Svitkin Y. V., Lee H. S., Lejbkowicz F., Kenan J. D., Chan E. K. L., Agol V. I., Keene J. D., Sonenberg N. 1993; La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67:3798–3807
    [Google Scholar]
  40. Mohan P. M., Padmanabhan R. 1991; Detection of stable secondary structure at the 3′ terminus of dengue virus type 2 RNA. Gene 108:185–191 [CrossRef]
    [Google Scholar]
  41. Nomaguchi M., Teramoto T., Yu L., Markoff L., Padmanabhan R. 2004; Requirements for West Nile virus (−)- and (+)-strand subgenomic RNA synthesis in vitro by the viral RNA-dependent RNA polymerase expressed in Escherichia coli . J Biol Chem 279:12141–12151 [CrossRef]
    [Google Scholar]
  42. Paranjape S. M., Harris E. 2007; Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects. J Biol Chem 282:30497–30508 [CrossRef]
    [Google Scholar]
  43. Park N., Katikanene P., Skern T., Gustin K. E. 2008; Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. J Virol 82:1647–1655 [CrossRef]
    [Google Scholar]
  44. Polacek C., Friebe P., Harris E. 2009; Poly(A)-binding protein binds to the non-polyadenylated 3′ untranslated region of dengue virus and modulates translation efficiency. J Gen Virol 90:687–692 [CrossRef]
    [Google Scholar]
  45. Proutski V., Gritsun T. S., Gould E. A., Holmes E. C. 1999; Biological consequences of deletions within the 3′-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure. Virus Res 64:107–123 [CrossRef]
    [Google Scholar]
  46. Raha T., Pudi R., Das S., Shaila M. S. 2004; Leader RNA of Rinderpest virus binds specifically with cellular La protein: a possible role in virus replication. Virus Res 104:101–109 [CrossRef]
    [Google Scholar]
  47. Rawlinson S. M., Pryor M. J., Wright P., Jans D. A. 2009; CRM1-mediated nuclear export of dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. J Biol Chem 284:15589–15597 [CrossRef]
    [Google Scholar]
  48. Sawicka K., Bushell M., Spriggs K. A., Willis A. E. 2008; Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 36:641–647 [CrossRef]
    [Google Scholar]
  49. Shi S. T., Lai M. M. C. 2005; Viral and cellular proteins involved in coronavirus replication. Curr Top Microbiol Immunol 287:95–131
    [Google Scholar]
  50. Tillmar L., Carlsson C., Welsh N. 2002; Control of insulin mRNA stability in rat pancreatic islets: regulatory role of a 3′ untranslated region pyrimidine-rich sequence. J Biol Chem 277:1099–1106 [CrossRef]
    [Google Scholar]
  51. Villordo S. M., Gamarnik A. V. 2009; Genome cyclization as strategy for flavivirus RNA replication. Virus Res 139:230–239 [CrossRef]
    [Google Scholar]
  52. Welsch S., Miller S., Romero-Brey I., Merz A., Bleck C. K., Walther P., Fuller S. D., Antony C., Krijnse-Locker J., Bartenschlager R. 2009; Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365–375 [CrossRef]
    [Google Scholar]
  53. Westaway E. G., Mackenzie J. M., Kenney M. T., Jones M. K., Khromykh A. A. 1997; Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J Virol 71:6650–6661
    [Google Scholar]
  54. Westaway E. G., Khromykh A. A., Mackenzie J. M. 1999; Nascent flavivirus RNA colocalized in situ with double-stranded RNA in stable replication complexes. Virology 258:108–117 [CrossRef]
    [Google Scholar]
  55. Westaway E. G., Mackenzie J. M., Khromykh A. A. 2003; Kunjin RNA replication and applications of Kunjin replicons. Adv Virus Res 59:99–140
    [Google Scholar]
  56. Xie J., Lee J. A., Kres T. L., Mowry K. L., Black D. L. 2003; Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc Natl Acad Sci U S A 100:8776–8781 [CrossRef]
    [Google Scholar]
  57. Yocupicio-Monroy R. M. E., Medina F., Reyes-del Valle J., Del Angel R. 2003; Cellular proteins from human monocytes bind to dengue 4 virus minus-strand 3′ untranslated region RNA. J Virol 77:3067–3076 [CrossRef]
    [Google Scholar]
  58. Yocupicio-Monroy M., Padmanabhan R., Medina F., del Angel R. M. 2007; Mosquito La protein binds to the 3′ untranslated region of the positive and negative polarity dengue virus RNAs and relocates to the cytoplasm of infected cells. Virology 357:29–40 [CrossRef]
    [Google Scholar]
  59. You S., Padmanabhan R. 1999; A novel in vitro replication system for dengue virus. J Biol Chem 274:33714–33722 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.013433-0
Loading
/content/journal/jgv/10.1099/vir.0.013433-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error