Quantitative evaluation of the role of Epstein–Barr virus immediate-early protein BZLF1 in B-cell transformation Free

Abstract

The Epstein–Barr virus (EBV) immediate-early transactivator BZLF1 plays a key role in switching EBV infection from the latent to the lytic form by stimulating the expression cascade of lytic genes; it also regulates the expression of several cellular genes. Recently, we reported that BZLF1 is expressed in primary human B cells early after EBV infection. To investigate whether this BZLF1 expression early after infection plays a role in the EBV-induced growth transformation of primary B cells, we generated BZLF1-knockout EBV and quantitatively evaluated its transforming ability compared with that of wild-type EBV. We found that the 50 % transforming dose of BZLF1-knockout EBV was quite similar to that of wild-type EBV. Established lymphoblastoid cell lines (LCLs) harbouring BZLF1-knockout EBV were indistinguishable from LCLs harbouring wild-type EBV in their pattern of latent gene expression and in their growth . Furthermore, the copy numbers of EBV episomes were very similar in the LCLs harbouring BZLF1-knockout EBV and in those harbouring wild-type EBV. These data indicate that disrupting BZLF1 expression in the context of the EBV genome, and the resultant inability to enter lytic replication, have little impact on the growth of LCLs and the steady-state copy number of EBV episomes in established LCLs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012831-0
2009-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/10/2331.html?itemId=/content/journal/jgv/10.1099/vir.0.012831-0&mimeType=html&fmt=ahah

References

  1. Adamson A. L., Kenney S. 1999; The Epstein–Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol 73:6551–6558
    [Google Scholar]
  2. Beatty P. R., Krams S. M., Martinez O. M. 1997; Involvement of IL-10 in the autonomous growth of EBV-transformed B cell lines. J Immunol 158:4045–4051
    [Google Scholar]
  3. Cayrol C., Flemington E. K. 1996; The Epstein–Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors. EMBO J 15:2748–2759
    [Google Scholar]
  4. Chang Y. N., Dong D. L., Hayward G. S., Hayward S. D. 1990; The Epstein–Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J Virol 64:3358–3369
    [Google Scholar]
  5. Chang Y., Lee H. H., Chen Y. T., Lu J., Wu S. Y., Chen C. W., Takada K., Tsai C. H. 2006; Induction of the early growth response 1 gene by Epstein–Barr virus lytic transactivator Zta. J Virol 80:7748–7755 [CrossRef]
    [Google Scholar]
  6. Cohen J. I., Wang F., Mannick J., Kieff E. 1989; Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A 86:9558–9562 [CrossRef]
    [Google Scholar]
  7. Countryman J., Miller G. 1985; Activation of expression of latent Epstein–Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A 82:4085–4089 [CrossRef]
    [Google Scholar]
  8. Farrell P. J., Rowe D. T., Rooney C. M., Kouzarides T. 1989; Epstein–Barr virus BZLF1 trans -activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J 8:127–132
    [Google Scholar]
  9. Feederle R., Kost M., Baumann M., Janz A., Drouet E., Hammerschmidt W., Delecluse H. J. 2000; The Epstein–Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19:3080–3089 [CrossRef]
    [Google Scholar]
  10. Feederle R., Neuhierl B., Bannert H., Geletneky K., Shannon-Lowe C., Delecluse H. J. 2007; Epstein–Barr virus B95.8 produced in 293 cells shows marked tropism for differentiated primary epithelial cells and reveals interindividual variation in susceptibility to viral infection. Int J Cancer 121:588–594 [CrossRef]
    [Google Scholar]
  11. Feng W. H., Kraus R. J., Dickerson S. J., Lim H. J., Jones R. J., Yu X., Mertz J. E., Kenney S. C. 2007; ZEB1 and c-Jun levels contribute to the establishment of highly lytic Epstein–Barr virus infection in gastric AGS cells. J Virol 81:10113–10122 [CrossRef]
    [Google Scholar]
  12. Flemington E., Speck S. H. 1990; Epstein–Barr virus BZLF1 trans activator induces the promoter of a cellular cognate gene,c- fos . J Virol 64:4549–4552
    [Google Scholar]
  13. Flemington E. K., Borras A. M., Lytle J. P., Speck S. H. 1992; Characterization of the Epstein–Barr virus BZLF1 protein transactivation domain. J Virol 66:922–929
    [Google Scholar]
  14. Hammerschmidt W., Sugden B. 1989; Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340:393–397 [CrossRef]
    [Google Scholar]
  15. Hong G. K., Gulley M. L., Feng W. H., Delecluse H. J., Holley-Guthrie E., Kenney S. C. 2005; Epstein–Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 79:13993–14003 [CrossRef]
    [Google Scholar]
  16. Hsu D. H., de Waal Malefyt R., Fiorentino D. F., Dang M. N., Vieira P., de Vries J., Spits H., Mosmann T. R., Moore K. W. 1990; Expression of interleukin-10 activity by Epstein–Barr virus protein BCRF1. Science 250:830–832 [CrossRef]
    [Google Scholar]
  17. Hsu M., Wu S. Y., Chang S. S., Su I. J., Tsai C. H., Lai S. J., Shiau A. L., Takada K., Chang Y. 2008; Epstein–Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J Virol 82:3679–3688 [CrossRef]
    [Google Scholar]
  18. Humme S., Reisbach G., Feederle R., Delecluse H. J., Bousset K., Hammerschmidt W., Schepers A. 2003; The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci U S A 100:10989–10994 [CrossRef]
    [Google Scholar]
  19. Imai S., Nishikawa J., Takada K. 1998; Cell-to-cell contact as an efficient mode of Epstein–Barr virus infection of diverse human epithelial cells. J Virol 72:4371–4378
    [Google Scholar]
  20. Isobe Y., Sugimoto K., Yang L., Tamayose K., Egashira M., Kaneko T., Takada K., Oshimi K. 2004; Epstein–Barr virus infection of human natural killer cell lines and peripheral blood natural killer cells. Cancer Res 64:2167–2174 [CrossRef]
    [Google Scholar]
  21. Iwakiri D., Takada K. 2004; Phosphatidylinositol 3-kinase is a determinant of responsiveness to B cell antigen receptor-mediated Epstein–Barr virus activation. J Immunol 172:1561–1566 [CrossRef]
    [Google Scholar]
  22. Jones R. J., Dickerson S., Bhende P. M., Delecluse H. J., Kenney S. C. 2007a; Epstein–Barr virus lytic infection induces retinoic acid-responsive genes through induction of a retinol-metabolizing enzyme, DHRS9. J Biol Chem 282:8317–8324 [CrossRef]
    [Google Scholar]
  23. Jones R. J., Seaman W. T., Feng W. H., Barlow E., Dickerson S., Delecluse H. J., Kenney S. C. 2007b; Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. Int J Cancer 121:1274–1281 [CrossRef]
    [Google Scholar]
  24. Kanda T., Kamiya M., Maruo S., Iwakiri D., Takada K. 2007; Symmetrical localization of extrachromosomally replicating viral genomes on sister chromatids. J Cell Sci 120:1529–1539 [CrossRef]
    [Google Scholar]
  25. Kaye K. M., Izumi K. M., Kieff E. 1993; Epstein–Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A 90:9150–9154 [CrossRef]
    [Google Scholar]
  26. Kelleher C. A., Paterson R. K., Dreyfus D. H., Streib J. E., Xu J. W., Takase K., Jones J. F., Gelfand E. W. 1995; Epstein–Barr virus replicative gene transcription during de novo infection of human thymocytes: simultaneous early expression of BZLF-1 and its repressor RAZ. Virology 208:685–695 [CrossRef]
    [Google Scholar]
  27. Kieff E., Rickinson A. B. 2007; Epstein–Barr virus and its replication. In Fields Virology , 5th edn. pp 2603–2654Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  28. Lieberman P. M., Berk A. J. 1991; The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein–protein interaction. Genes Dev 5:2441–2454 [CrossRef]
    [Google Scholar]
  29. Lieberman P. M., Berk A. J. 1994; A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID–TFIIA – promoter DNA complex formation. Genes Dev 8:995–1006 [CrossRef]
    [Google Scholar]
  30. Mahot S., Sergeant A., Drouet E., Gruffat H. 2003; A novel function for the Epstein–Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J Gen Virol 84:965–974 [CrossRef]
    [Google Scholar]
  31. Mannick J. B., Cohen J. I., Birkenbach M., Marchini A., Kieff E. 1991; The Epstein–Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol 65:6826–6837
    [Google Scholar]
  32. Maruo S., Yang L., Takada K. 2001; Roles of Epstein–Barr virus glycoproteins gp350 and gp25 in the infection of human epithelial cells. J Gen Virol 82:2373–2383
    [Google Scholar]
  33. Maruo S., Johannsen E., Illanes D., Cooper A., Kieff E. 2003; Epstein–Barr virus nuclear protein EBNA3A is critical for maintaining lymphoblastoid cell line growth. J Virol 77:10437–10447 [CrossRef]
    [Google Scholar]
  34. Maruo S., Wu Y., Ishikawa S., Kanda T., Iwakiri D., Takada K. 2006; Epstein–Barr virus nuclear protein EBNA3C is required for cell cycle progression and growth maintenance of lymphoblastoid cells. Proc Natl Acad Sci U S A 103:19500–19505 [CrossRef]
    [Google Scholar]
  35. Mauser A., Holley-Guthrie E., Simpson D., Kaufmann W., Kenney S. 2002a; The Epstein–Barr virus immediate-early protein BZLF1 induces both a G2 and a mitotic block. J Virol 76:10030–10037 [CrossRef]
    [Google Scholar]
  36. Mauser A., Holley-Guthrie E., Zanation A., Yarborough W., Kaufmann W., Klingelhutz A., Seaman W. T., Kenney S. 2002b; The Epstein–Barr virus immediate-early protein BZLF1 induces expression of E2F-1 and other proteins involved in cell cycle progression in primary keratinocytes and gastric carcinoma cells. J Virol 76:12543–12552 [CrossRef]
    [Google Scholar]
  37. Nanbo A., Inoue K., Adachi-Takasawa K., Takada K. 2002; Epstein–Barr virus RNA confers resistance to interferon- α -induced apoptosis in Burkitt's lymphoma. EMBO J 21:954–965 [CrossRef]
    [Google Scholar]
  38. Nanbo A., Sugden A., Sugden B. 2007; The coupling of synthesis and partitioning of EBV's plasmid replicon is revealed in live cells. EMBO J 26:4252–4262 [CrossRef]
    [Google Scholar]
  39. Pfüller R., Hammerschmidt W. 1996; Plasmid-like replicative intermediates of the Epstein–Barr virus lytic origin of DNA replication. J Virol 70:3423–3431
    [Google Scholar]
  40. Rickinson A. B., Kieff E. 2007; Epstein–Barr virus. In Fields Virology , 5th edn. pp 2655–2700Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  41. Rodriguez A., Armstrong M., Dwyer D., Flemington E. 1999; Genetic dissection of cell growth arrest functions mediated by the Epstein–Barr virus lytic gene product, Zta. J Virol 73:9029–9038
    [Google Scholar]
  42. Rodriguez A., Jung E. J., Yin Q., Cayrol C., Flemington E. K. 2001; Role of c-myc regulation in Zta-mediated induction of the cyclin-dependent kinase inhibitors p21 and p27 and cell growth arrest. Virology 284:159–169 [CrossRef]
    [Google Scholar]
  43. Savard M., Bélanger C., Tardif M., Gourde P., Flamand L., Gosselin J. 2000; Infection of primary human monocytes by Epstein–Barr virus. J Virol 74:2612–2619 [CrossRef]
    [Google Scholar]
  44. Scala G., Quinto I., Ruocco M. R., Arcucci A., Mallardo M., Caretto P., Forni G., Venuta S. 1990; Expression of an exogenous interleukin 6 gene in human Epstein–Barr virus B cells confers growth advantage and in vivo tumorigenicity. J Exp Med 172:61–68 [CrossRef]
    [Google Scholar]
  45. Shimizu N., Tanabe-Tochikura A., Kuroiwa Y., Takada K. 1994; Isolation of Epstein–Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt's lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J Virol 68:6069–6073
    [Google Scholar]
  46. Shimizu N., Yoshiyama H., Takada K. 1996; Clonal propagation of Epstein–Barr virus (EBV) recombinants in EBV-negative Akata cells. J Virol 70:7260–7263
    [Google Scholar]
  47. Sinclair A. J. 2003; bZIP proteins of human gammaherpesviruses. J Gen Virol 84:1941–1949 [CrossRef]
    [Google Scholar]
  48. Stuart A. D., Stewart J. P., Arrand J. R., Mackett M. 1995; The Epstein–Barr virus encoded cytokine viral interleukin-10 enhances transformation of human B lymphocytes. Oncogene 11:1711–1719
    [Google Scholar]
  49. Sugden B., Phelps M., Domoradzki J. 1979; Epstein–Barr virus DNA is amplified in transformed lymphocytes. J Virol 31:590–595
    [Google Scholar]
  50. Takada K., Shimizu N., Sakuma S., Ono Y. 1986; trans activation of the latent Epstein–Barr virus (EBV) genome after transfection of the EBV DNA fragment. J Virol 57:1016–1022
    [Google Scholar]
  51. Takada K., Horinouchi K., Ono Y., Aya T., Osato T., Takahashi M., Hayasaka S. 1991; An Epstein–Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus Genes 5:147–156 [CrossRef]
    [Google Scholar]
  52. Tomkinson B., Robertson E., Kieff E. 1993; Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 67:2014–2025
    [Google Scholar]
  53. Tosato G., Tanner J., Jones K. D., Revel M., Pike S. E. 1990; Identification of interleukin-6 as an autocrine growth factor for Epstein–Barr virus-immortalized B cells. J Virol 64:3033–3041
    [Google Scholar]
  54. Tsurumi T., Fujita M., Kudoh A. 2005; Latent and lytic Epstein–Barr virus replication strategies. Rev Med Virol 15:3–15 [CrossRef]
    [Google Scholar]
  55. Wen W., Iwakiri D., Yamamoto K., Maruo S., Kanda T., Takada K. 2007; Epstein–Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes. J Virol 81:1037–1042 [CrossRef]
    [Google Scholar]
  56. Wu F. Y., Chen H., Wang S. E., ApRhys C. M., Liao G., Fujimuro M., Farrell C. J., Huang J., Hayward S. D., Hayward G. S. 2003; CCAAT/enhancer binding protein α interacts with ZTA and mediates ZTA-induced p21CIP-1 accumulation and G1 cell cycle arrest during the Epstein–Barr virus lytic cycle. J Virol 77:1481–1500 [CrossRef]
    [Google Scholar]
  57. Wu Y., Maruo S., Yajima M., Kanda T., Takada K. 2007; Epstein–Barr virus (EBV)-encoded RNA 2 (EBER2) but not EBER1 plays a critical role in EBV-induced B-cell growth transformation. J Virol 81:11236–11245 [CrossRef]
    [Google Scholar]
  58. Yajima M., Kanda T., Takada K. 2005; Critical role of Epstein–Barr Virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol 79:4298–4307 [CrossRef]
    [Google Scholar]
  59. Yokoi T., Miyawaki T., Yachie A., Kato K., Kasahara Y., Taniguchi N. 1990; Epstein–Barr virus-immortalized B cells produce IL-6 as an autocrine growth factor. Immunology 70:100–105
    [Google Scholar]
  60. Yoshiyama H., Imai S., Shimizu N., Takada K. 1997; Epstein–Barr virus infection of human gastric carcinoma cells: implication of the existence of a new virus receptor different from CD21. J Virol 71:5688–5691
    [Google Scholar]
  61. Zerby D., Chen C. J., Poon E., Lee D., Shiekhattar R., Lieberman P. M. 1999; The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein–Barr virus. Mol Cell Biol 19:1617–1626
    [Google Scholar]
  62. Zhang Q., Gutsch D., Kenney S. 1994; Functional and physical interaction between p53 and BZLF1: implications for Epstein–Barr virus latency. Mol Cell Biol 14:1929–1938
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012831-0
Loading
/content/journal/jgv/10.1099/vir.0.012831-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed