Dependence of the localization and function of the human cytomegalovirus protein US6 on the transporter associated with antigen processing Free

Abstract

Human cytomegalovirus protein US6 inhibits the transporter associated with antigen processing (TAP), which transports peptides into the endoplasmic reticulum (ER) for binding to major histocompatibility complex (MHC) class I molecules. We demonstrate that, in TAP-deficient cells, US6 is retained in the ER and binds to calnexin, but does not inhibit cell-surface expression of HLA-A201, an MHC class I allele that binds to peptides whose import into the ER is TAP-independent. Furthermore, in TAP-positive cells, US6 reduces the cell-surface expression of HLA-B2705, an MHC class I allele that is dependent on TAP for peptide binding, to a greater extent than that of HLA-A201. These data demonstrate that US6 has differential effects on the cell-surface expression of MHC class I alleles and are consistent with TAP being the sole inhibitory target of US6 in the MHC class I antigen-presentation pathway.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012757-0
2009-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/9/2234.html?itemId=/content/journal/jgv/10.1099/vir.0.012757-0&mimeType=html&fmt=ahah

References

  1. Abele, R. & Tampe, R.(2004). The ABCs of immunology: structure and function of TAP, the transporter associated with antigen processing. Physiology (Bethesda) 19, 216–224.[CrossRef] [Google Scholar]
  2. Ahn, K., Gruhler, A., Galocha, B., Jones, T. R., Wiertz, E. J., Ploegh, H. L., Peterson, P. A., Yang, Y. & Fruh, K.(1997). The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613–621.[CrossRef] [Google Scholar]
  3. Antoniou, A. N., Powis, S. J. & Elliott, T.(2003). Assembly and export of MHC class I peptide ligands. Curr Opin Immunol 15, 75–81.[CrossRef] [Google Scholar]
  4. Daniel, S., Brusic, V., Caillat-Zucman, S., Petrovsky, N., Harrison, L., Riganelli, D., Sinigaglia, F., Gallazzi, F., Hammer, J. & van Endert, P. M.(1998). Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules. J Immunol 161, 617–624. [Google Scholar]
  5. Dugan, G. E. & Hewitt, E. W.(2008). Structural and functional dissection of the human cytomegalovirus immune evasion protein US6. J Virol 82, 3271–3282.[CrossRef] [Google Scholar]
  6. Ellis, S. A., Taylor, C. & McMichael, A.(1982). Recognition of HLA-B27 and related antigen by a monoclonal antibody. Hum Immunol 5, 49–59.[CrossRef] [Google Scholar]
  7. Gewurz, B. E., Gaudet, R., Tortorella, D., Wang, E. W., Ploegh, H. L. & Wiley, D. C.(2001). Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci U S A 98, 6794–6799.[CrossRef] [Google Scholar]
  8. Henderson, R. A., Michel, H., Sakaguchi, K., Shabanowitz, J., Appella, E., Hunt, D. F. & Engelhard, V. H.(1992). HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255, 1264–1266.[CrossRef] [Google Scholar]
  9. Hengel, H., Koopmann, J. O., Flohr, T., Muranyi, W., Goulmy, E., Hammerling, G. J., Koszinowski, U. H. & Momburg, F.(1997). A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623–632.[CrossRef] [Google Scholar]
  10. Hewitt, E. W.(2003). The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110, 163–169.[CrossRef] [Google Scholar]
  11. Hewitt, E. W. & Dugan, G. E.(2004). Virus subversion of protective immunity. Curr Allergy Asthma Rep 4, 365–370.[CrossRef] [Google Scholar]
  12. Hewitt, E. W., Gupta, S. S. & Lehner, P. J.(2001). The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20, 387–396.[CrossRef] [Google Scholar]
  13. Hewitt, E. W., Duncan, L., Mufti, D., Baker, J., Stevenson, P. G. & Lehner, P. J.(2002). Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J 21, 2418–2429.[CrossRef] [Google Scholar]
  14. Jackson, M. R., Cohen-Doyle, M. F., Peterson, P. A. & Williams, D. B.(1994). Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263, 384–387.[CrossRef] [Google Scholar]
  15. Kyritsis, C., Gorbulev, S., Hutschenreiter, S., Pawlitschko, K., Abele, R. & Tampe, R.(2001). Molecular mechanism and structural aspects of transporter associated with antigen processing inhibition by the cytomegalovirus protein US6. J Biol Chem 276, 48031–48039. [Google Scholar]
  16. Lehner, P. J., Karttunen, J. T., Wilkinson, G. W. & Cresswell, P.(1997). The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci U S A 94, 6904–6909.[CrossRef] [Google Scholar]
  17. Oosten, L. E., Koppers-Lalic, D., Blokland, E., Mulder, A., Ressing, M. E., Mutis, T., van Halteren, A. G., Wiertz, E. J. & Goulmy, E.(2007). TAP-inhibiting proteins US6, ICP47 and UL49.5 differentially affect minor and major histocompatibility antigen-specific recognition by cytotoxic T lymphocytes. Int Immunol 19, 1115–1122.[CrossRef] [Google Scholar]
  18. Ortmann, B., Androlewicz, M. J. & Cresswell, P.(1994). MHC class I/β2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 368, 864–867.[CrossRef] [Google Scholar]
  19. Peaper, D. R. & Cresswell, P.(2008). Regulation of MHC class I assembly and peptide binding. Annu Rev Cell Dev Biol 24, 343–368.[CrossRef] [Google Scholar]
  20. Reits, E. A., Vos, J. C., Gromme, M. & Neefjes, J.(2000). The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778.[CrossRef] [Google Scholar]
  21. Rock, K. L. & Goldberg, A. L.(1999). Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17, 739–779.[CrossRef] [Google Scholar]
  22. Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P.(1996). Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5, 103–114.[CrossRef] [Google Scholar]
  23. Schust, D. J., Tortorella, D., Seebach, J., Phan, C. & Ploegh, H. L.(1998). Trophoblast class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US11. J Exp Med 188, 497–503.[CrossRef] [Google Scholar]
  24. Smith, K. D. & Lutz, C. T.(1996). Peptide-dependent expression of HLA-B7 on antigen processing-deficient T2 cells. J Immunol 156, 3755–3764. [Google Scholar]
  25. Stam, N. J., Spits, H. & Ploegh, H. L.(1986). Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J Immunol 137, 2299–2306. [Google Scholar]
  26. van Endert, P. M., Saveanu, L., Hewitt, E. W. & Lehner, P.(2002). Powering the peptide pump: TAP crosstalk with energetic nucleotides. Trends Biochem Sci 27, 454–461.[CrossRef] [Google Scholar]
  27. Wei, M. L. & Cresswell, P.(1992). HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356, 443–446.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012757-0
Loading
/content/journal/jgv/10.1099/vir.0.012757-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed