1887

Abstract

Human cytomegalovirus protein US6 inhibits the transporter associated with antigen processing (TAP), which transports peptides into the endoplasmic reticulum (ER) for binding to major histocompatibility complex (MHC) class I molecules. We demonstrate that, in TAP-deficient cells, US6 is retained in the ER and binds to calnexin, but does not inhibit cell-surface expression of HLA-A201, an MHC class I allele that binds to peptides whose import into the ER is TAP-independent. Furthermore, in TAP-positive cells, US6 reduces the cell-surface expression of HLA-B2705, an MHC class I allele that is dependent on TAP for peptide binding, to a greater extent than that of HLA-A201. These data demonstrate that US6 has differential effects on the cell-surface expression of MHC class I alleles and are consistent with TAP being the sole inhibitory target of US6 in the MHC class I antigen-presentation pathway.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012757-0
2009-09-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/9/2234.html?itemId=/content/journal/jgv/10.1099/vir.0.012757-0&mimeType=html&fmt=ahah

References

  1. Abele, R. & Tampe, R. ( 2004; ). The ABCs of immunology: structure and function of TAP, the transporter associated with antigen processing. Physiology (Bethesda) 19, 216–224.[CrossRef]
    [Google Scholar]
  2. Ahn, K., Gruhler, A., Galocha, B., Jones, T. R., Wiertz, E. J., Ploegh, H. L., Peterson, P. A., Yang, Y. & Fruh, K. ( 1997; ). The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613–621.[CrossRef]
    [Google Scholar]
  3. Antoniou, A. N., Powis, S. J. & Elliott, T. ( 2003; ). Assembly and export of MHC class I peptide ligands. Curr Opin Immunol 15, 75–81.[CrossRef]
    [Google Scholar]
  4. Daniel, S., Brusic, V., Caillat-Zucman, S., Petrovsky, N., Harrison, L., Riganelli, D., Sinigaglia, F., Gallazzi, F., Hammer, J. & van Endert, P. M. ( 1998; ). Relationship between peptide selectivities of human transporters associated with antigen processing and HLA class I molecules. J Immunol 161, 617–624.
    [Google Scholar]
  5. Dugan, G. E. & Hewitt, E. W. ( 2008; ). Structural and functional dissection of the human cytomegalovirus immune evasion protein US6. J Virol 82, 3271–3282.[CrossRef]
    [Google Scholar]
  6. Ellis, S. A., Taylor, C. & McMichael, A. ( 1982; ). Recognition of HLA-B27 and related antigen by a monoclonal antibody. Hum Immunol 5, 49–59.[CrossRef]
    [Google Scholar]
  7. Gewurz, B. E., Gaudet, R., Tortorella, D., Wang, E. W., Ploegh, H. L. & Wiley, D. C. ( 2001; ). Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc Natl Acad Sci U S A 98, 6794–6799.[CrossRef]
    [Google Scholar]
  8. Henderson, R. A., Michel, H., Sakaguchi, K., Shabanowitz, J., Appella, E., Hunt, D. F. & Engelhard, V. H. ( 1992; ). HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255, 1264–1266.[CrossRef]
    [Google Scholar]
  9. Hengel, H., Koopmann, J. O., Flohr, T., Muranyi, W., Goulmy, E., Hammerling, G. J., Koszinowski, U. H. & Momburg, F. ( 1997; ). A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623–632.[CrossRef]
    [Google Scholar]
  10. Hewitt, E. W. ( 2003; ). The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110, 163–169.[CrossRef]
    [Google Scholar]
  11. Hewitt, E. W. & Dugan, G. E. ( 2004; ). Virus subversion of protective immunity. Curr Allergy Asthma Rep 4, 365–370.[CrossRef]
    [Google Scholar]
  12. Hewitt, E. W., Gupta, S. S. & Lehner, P. J. ( 2001; ). The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20, 387–396.[CrossRef]
    [Google Scholar]
  13. Hewitt, E. W., Duncan, L., Mufti, D., Baker, J., Stevenson, P. G. & Lehner, P. J. ( 2002; ). Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J 21, 2418–2429.[CrossRef]
    [Google Scholar]
  14. Jackson, M. R., Cohen-Doyle, M. F., Peterson, P. A. & Williams, D. B. ( 1994; ). Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263, 384–387.[CrossRef]
    [Google Scholar]
  15. Kyritsis, C., Gorbulev, S., Hutschenreiter, S., Pawlitschko, K., Abele, R. & Tampe, R. ( 2001; ). Molecular mechanism and structural aspects of transporter associated with antigen processing inhibition by the cytomegalovirus protein US6. J Biol Chem 276, 48031–48039.
    [Google Scholar]
  16. Lehner, P. J., Karttunen, J. T., Wilkinson, G. W. & Cresswell, P. ( 1997; ). The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci U S A 94, 6904–6909.[CrossRef]
    [Google Scholar]
  17. Oosten, L. E., Koppers-Lalic, D., Blokland, E., Mulder, A., Ressing, M. E., Mutis, T., van Halteren, A. G., Wiertz, E. J. & Goulmy, E. ( 2007; ). TAP-inhibiting proteins US6, ICP47 and UL49.5 differentially affect minor and major histocompatibility antigen-specific recognition by cytotoxic T lymphocytes. Int Immunol 19, 1115–1122.[CrossRef]
    [Google Scholar]
  18. Ortmann, B., Androlewicz, M. J. & Cresswell, P. ( 1994; ). MHC class I/β 2-microglobulin complexes associate with TAP transporters before peptide binding. Nature 368, 864–867.[CrossRef]
    [Google Scholar]
  19. Peaper, D. R. & Cresswell, P. ( 2008; ). Regulation of MHC class I assembly and peptide binding. Annu Rev Cell Dev Biol 24, 343–368.[CrossRef]
    [Google Scholar]
  20. Reits, E. A., Vos, J. C., Gromme, M. & Neefjes, J. ( 2000; ). The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778.[CrossRef]
    [Google Scholar]
  21. Rock, K. L. & Goldberg, A. L. ( 1999; ). Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu Rev Immunol 17, 739–779.[CrossRef]
    [Google Scholar]
  22. Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P. ( 1996; ). Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5, 103–114.[CrossRef]
    [Google Scholar]
  23. Schust, D. J., Tortorella, D., Seebach, J., Phan, C. & Ploegh, H. L. ( 1998; ). Trophoblast class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US11. J Exp Med 188, 497–503.[CrossRef]
    [Google Scholar]
  24. Smith, K. D. & Lutz, C. T. ( 1996; ). Peptide-dependent expression of HLA-B7 on antigen processing-deficient T2 cells. J Immunol 156, 3755–3764.
    [Google Scholar]
  25. Stam, N. J., Spits, H. & Ploegh, H. L. ( 1986; ). Monoclonal antibodies raised against denatured HLA-B locus heavy chains permit biochemical characterization of certain HLA-C locus products. J Immunol 137, 2299–2306.
    [Google Scholar]
  26. van Endert, P. M., Saveanu, L., Hewitt, E. W. & Lehner, P. ( 2002; ). Powering the peptide pump: TAP crosstalk with energetic nucleotides. Trends Biochem Sci 27, 454–461.[CrossRef]
    [Google Scholar]
  27. Wei, M. L. & Cresswell, P. ( 1992; ). HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356, 443–446.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012757-0
Loading
/content/journal/jgv/10.1099/vir.0.012757-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error