The alphavirus non-structural protein 3 (nsP3) has a conserved N-terminal macro domain and a variable highly phosphorylated C-terminal domain. nsP3 forms complexes with cellular proteins, but its role in virus replication is poorly understood and protein interaction domains have not been defined. As the N-terminal macro domain can bind poly(ADP-ribose) (PAR), and PAR polymerase-1 (PARP-1) is activated and autoribosylated during Sindbis virus (SINV) infection, it was hypothesized that PARP-1 and nsP3 may interact. Co-immunoprecipitation studies showed that PARP-1 interacted with nsP3 during SINV infection of NSC34 neuronal cells and was most abundantly present in replication complexes that contained plus- and minus-strand SINV RNAs 10–14 h after infection, prior to PARP-1 activation or automodification with PAR. Treatment with an inhibitor of PARP enzymic activity did not affect the interaction between nsP3 and PARP-1 or SINV replication. Co-expression of individual domains of nsP3 with PARP-1 showed that nsP3 interacted with PARP-1 through the C-terminal domain, not the N-terminal macro domain, and that phosphorylation was not required. It was concluded that PARP-1 interacts with the C-terminal domain of nsP3, is present in replication complexes during virus amplification and may play a role in regulating virus RNA synthesis in neuronal cells.


Article metrics loading...

Loading full text...

Full text loading...



  1. Amé, J. C., Spenlehauer, C. & de Murcia, G.(2004). The PARP superfamily. Bioessays 26, 882–893.[CrossRef] [Google Scholar]
  2. Andrabi, S. A., Dawson, T. M. & Dawson, V. L.(2008). Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci 1147, 233–241.[CrossRef] [Google Scholar]
  3. Bryant, H. E. & Helleday, T.(2004). Poly(ADP-ribose) polymerase inhibitors as potential chemotherapeutic agents. Biochem Soc Trans 32, 959–961.[CrossRef] [Google Scholar]
  4. Calisher, C. H.(1994). Medically important arboviruses of the United States and Canada. Clin Microbiol Rev 7, 89–116. [Google Scholar]
  5. Cashman, N. R., Durham, H. D., Blusztajn, J. K., Oda, K., Tabira, T., Shaw, I. T., Dahrouge, S. & Antel, J. P.(1992). Neuroblastoma × spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Dev Dyn 194, 209–221.[CrossRef] [Google Scholar]
  6. Cervellera, M. N. & Sala, A.(2000). Poly(ADP-ribose) polymerase is a B-MYB coactivator. J Biol Chem 275, 10692–10696.[CrossRef] [Google Scholar]
  7. Cohen-Armon, M., Visochek, L., Rozensal, D., Kalal, A., Geistrikh, I., Klein, R., Bendetz-Nezer, S., Yao, Z. & Seger, R.(2007). DNA-independent PARP-1 activation by phosphorylated ERK2 increases Elk1 activity: a link to histone acetylation. Mol Cell 25, 297–308.[CrossRef] [Google Scholar]
  8. Comstock, L. R. & Denu, J. M.(2007). Synthesis and biochemical evaluation of O-acetyl-ADP-ribose and N-acetyl analogs. Org Biomol Chem 5, 3087–3091.[CrossRef] [Google Scholar]
  9. Cristea, I. M., Carroll, J. W., Rout, M. P., Rice, C. M., Chait, B. T. & MacDonald, M. R.(2006). Tracking and elucidating alphavirus–host protein interactions. J Biol Chem 281, 30269–30278.[CrossRef] [Google Scholar]
  10. De, I., Sawicki, S. G. & Sawicki, D. L.(1996). Sindbis virus RNA-negative mutants that fail to convert from minus-strand to plus-strand synthesis: role of the nsP2 protein. J Virol 70, 2706–2719. [Google Scholar]
  11. De, I., Fata-Hartley, C., Sawicki, S. G. & Sawicki, D. L.(2003). Functional analysis of nsP3 phosphoprotein mutants of Sindbis virus. J Virol 77, 13106–13116.[CrossRef] [Google Scholar]
  12. de Groot, R. J., Hardy, W. R., Shirako, Y. & Strauss, J. H.(1990). Cleavage-site preferences of Sindbis virus polyproteins containing the non-structural proteinase. Evidence for temporal regulation of polyprotein processing in vivo. EMBO J 9, 2631–2638. [Google Scholar]
  13. Despres, P., Griffin, J. W. & Griffin, D. E.(1995). Effects of anti-E2 monoclonal antibody on Sindbis virus replication in AT3 cells expressing bcl-2. J Virol 69, 7006–7014. [Google Scholar]
  14. Ding, M. X. & Schlesinger, M. J.(1989). Evidence that Sindbis virus nsP2 is an autoprotease which processes the virus nonstructural polyprotein. Virology 171, 280–284.[CrossRef] [Google Scholar]
  15. Durham, H. D., Dahrouge, S. & Cashman, N. R.(1993). Evaluation of the spinal cord neuron × neuroblastoma hybrid cell line NSC-34 as a model for neurotoxicity testing. Neurotoxicology 14, 387–395. [Google Scholar]
  16. Egloff, M. P., Malet, H., Putics, A., Heinonen, M, Dutartre, H., Frangeul, A., Gruez, A., Campanacci, V., Cambillau, C. & other authors(2006). Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J Virol 80, 8493–8502.[CrossRef] [Google Scholar]
  17. Frolova, E., Gorchakov, R., Garmashova, N., Atasheva, S., Vergara, L. A. & Frolov, I.(2006). Formation of nsP3-specific protein complexes during Sindbis virus replication. J Virol 80, 4122–4134.[CrossRef] [Google Scholar]
  18. Gomez de Cedrón, M., Ehsani, N., Mikkola, M. L., García, J. A. & Kääriäinen, L.(1999). RNA helicase activity of Semliki Forest virus replicase protein NSP2. FEBS Lett 448, 19–22.[CrossRef] [Google Scholar]
  19. Gorbalenya, A. E., Koonin, E. V. & Lai, M. M.(1991). Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett 288, 201–205.[CrossRef] [Google Scholar]
  20. Gorchakov, R., Garmashova, N., Frolova, E. & Frolov, I.(2008). Different types of nsP3-containing protein complexes in Sindbis virus-infected cells. J Virol 82, 10088–10101.[CrossRef] [Google Scholar]
  21. Griesenbeck, J., Ziegler, M., Tomilin, N., Schweiger, M. & Oei, S. L.(1999). Stimulation of the catalytic activity of poly(ADP-ribosyl) transferase by transcription factor Yin Yang 1. FEBS Lett 443, 20–24.[CrossRef] [Google Scholar]
  22. Griffin, D. E.(2007). Alphaviruses. In Fields Virology, 5th edn, pp. 1023–1067. Edited by D. L. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia, PA: Lippincott Williams & Wilkins.
  23. Haince, J. F., Rouleau, M. & Poirier, G. G.(2006). Transcription. Gene expression needs a break to unwind before carrying on. Science 312, 1752–1753.[CrossRef] [Google Scholar]
  24. Hardy, W. R. & Strauss, J. H.(1989). Processing the nonstructural polyproteins of Sindbis virus: nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans. J Virol 63, 4653–4664. [Google Scholar]
  25. Hassa, P. O. & Hottiger, M. O.(2002). The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-κB in inflammatory disorders. Cell Mol Life Sci 59, 1534–1553.[CrossRef] [Google Scholar]
  26. Hassa, P. O., Covic, M., Hasan, S., Imhof, R. & Hottiger, M. O.(2001). The enzymatic and DNA binding activity of PARP-1 are not required for NF-κB coactivator function. J Biol Chem 276, 45588–45597.[CrossRef] [Google Scholar]
  27. Hassa, P. O., Haenni, S. S., Buerki, C., Meier, N. I., Lane, W. S., Owen, H., Gersbach, M., Imhof, R. & Hottiger, M. O.(2005). Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-κB-dependent transcription. J Biol Chem 280, 40450–40464.[CrossRef] [Google Scholar]
  28. Homburg, S., Visochek, L., Moran, N., Dantzer, F., Priel, E., Asculai, E., Schwartz, D., Rotter, V., Dekel, N. & Cohen-Armon, M.(2000). A fast signal-induced activation of poly(ADP-ribose) polymerase: a novel downstream target of phospholipase C. J Cell Biol 150, 293–307.[CrossRef] [Google Scholar]
  29. Jakubiec, A. & Jupin, I.(2007). Regulation of positive-strand RNA virus replication: the emerging role of phosphorylation. Virus Res 129, 73–79.[CrossRef] [Google Scholar]
  30. Ju, B. G., Solum, D., Song, E. J., Lee, K. J., Rose, D. W., Glass, C. K. & Rosenfeld, M. G.(2004). Activating the PARP-1 sensor component of the groucho/TLE1 corepressor complex mediates a CaMKinase IIδ-dependent neurogenic gene activation pathway. Cell 119, 815–829.[CrossRef] [Google Scholar]
  31. Kamer, G. & Argos, P.(1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12, 7269–7282.[CrossRef] [Google Scholar]
  32. Karras, G. I., Kustatscher, G., Buhecha, H. R., Allen, M. D., Pugieux, C., Sait, F., Bycroft, M. & Ladurner, A. G.(2005). The macro domain is an ADP-ribose binding module. EMBO J 24, 1911–1920.[CrossRef] [Google Scholar]
  33. Kim, M. Y., Zhang, T. & Kraus, W. L.(2005). Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev 19, 1951–1967.[CrossRef] [Google Scholar]
  34. Koonin, E. V., Gorbalenya, A. E., Purdy, M. A., Rozanov, M. N., Reyes, G. R. & Bradley, D. W.(1992). Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci U S A 89, 8259–8263.[CrossRef] [Google Scholar]
  35. Kraus, W. L. & Lis, J. T.(2003). PARP goes transcription. Cell 113, 677–683.[CrossRef] [Google Scholar]
  36. Kun, E., Kirsten, E. & Ordahl, C. P.(2002). Coenzymatic activity of randomly broken or intact double-stranded DNAs in auto and histone H1 trans-poly(ADP-ribosylation), catalyzed by poly(ADP-ribose) polymerase (PARP I). J Biol Chem 277, 39066–39069.[CrossRef] [Google Scholar]
  37. Kun, E., Kirsten, E., Mendeleyev, J. & Ordahl, C. P.(2004). Regulation of the enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones H1 and H3, and ATP. Biochemistry 43, 210–216.[CrossRef] [Google Scholar]
  38. Kustatscher, G., Hothorn, M., Pugieux, C., Scheffzek, K. & Ladurner, A. G.(2005). Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12, 624–625.[CrossRef] [Google Scholar]
  39. Laine, M., Luukkainen, R. & Toivanen, A.(2004). Sindbis viruses and other alphaviruses as cause of human arthritic disease. J Intern Med 256, 457–471.[CrossRef] [Google Scholar]
  40. LaStarza, M. W., Grakoui, A. & Rice, C. M.(1994a). Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus nsP3: effects on phosphorylation and on virus replication in vertebrate and invertebrate cells. Virology 202, 224–232.[CrossRef] [Google Scholar]
  41. LaStarza, M. W., Lemm, J. A. & Rice, C. M.(1994b). Genetic analysis of the nsP3 region of Sindbis virus: evidence for roles in minus-strand and subgenomic RNA synthesis. J Virol 68, 5781–5791. [Google Scholar]
  42. Lemm, J. A., Rumenapf, T., Strauss, E. G., Strauss, J. H. & Rice, C. M.(1994). Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus- and plus-strand RNA synthesis. EMBO J 13, 2925–2934. [Google Scholar]
  43. Lemm, J. A., Bergqvist, A., Read, C. M. & Rice, C. M.(1998). Template-dependent initiation of Sindbis virus RNA replication in vitro. J Virol 72, 6546–6553. [Google Scholar]
  44. Li, G. P., La Starza, M. W., Hardy, W. R., Strauss, J. H. & Rice, C. M.(1990). Phosphorylation of Sindbis virus nsP3 in vivo and in vitro. Virology 179, 416–427.[CrossRef] [Google Scholar]
  45. Li, Y., Oh, H. J. & Lau, Y. F.(2006). The poly(ADP-ribose) polymerase 1 interacts with Sry and modulates its biological functions. Mol Cell Endocrinol 257–258, 35–46. [Google Scholar]
  46. Liang, Y., Yao, J. & Gillam, S.(2000). Rubella virus nonstructural protein protease domains involved in trans- and cis-cleavage activities. J Virol 74, 5412–5423.[CrossRef] [Google Scholar]
  47. Lustig, S., Jackson, A. C., Hahn, C. S., Griffin, D. E., Strauss, E. G. & Strauss, J. H.(1988). The molecular basis of Sindbis virus neurovirulence in mice. J Virol 62, 2329–2336. [Google Scholar]
  48. Masutani, M. & Miwa, M.(2002). Poly(ADP-ribose) polymerase and cancer: in relation to the lectures presented by Dr Gilbert de Murcia. Jpn J Clin Oncol 32, 483–487.[CrossRef] [Google Scholar]
  49. Meder, V. S., Boeglin, M., de Murcia, G. & Schreiber, V.(2005). PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci 118, 211–222.[CrossRef] [Google Scholar]
  50. Meli, E., Baronti, R., Pangallo, M., Picca, R., Moroni, F. & Pellegrini-Giampietro, D. E.(2005). Group I metabotropic glutamate receptors stimulate the activity of poly(ADP-ribose) polymerase in mammalian mGlu1-transfected cells and in cortical cell cultures. Neuropharmacology 49 (Suppl. 1), 80–88.[CrossRef] [Google Scholar]
  51. Mi, S., Durbin, R., Huang, H. V., Rice, C. M. & Stollar, V.(1989). Association of the Sindbis virus RNA methytransferase activity with the nonstructural protein nsP1. Virology 170, 385–391.[CrossRef] [Google Scholar]
  52. Monaco, L., Kolthur-Seetharam, U., Loury, R., Murcia, J. M., de Murcia, G. & Sassone-Corsi, P.(2005). Inhibition of Aurora-B kinase activity by poly(ADP-ribosyl)ation in response to DNA damage. Proc Natl Acad Sci U S A 102, 14244–14248.[CrossRef] [Google Scholar]
  53. Nargi-Aizenman, J. L. & Griffin, D. E.(2001). Sindbis virus-induced neuronal death is both necrotic and apoptotic and is ameliorated by N-methyl-d-aspartate receptor antagonists. J Virol 75, 7114–7121.[CrossRef] [Google Scholar]
  54. Nargi-Aizenman, J. L., Simbulan-Rosenthal, C. M., Kelly, T. A., Smulson, M. E. & Griffin, D. E.(2002). Rapid activation of poly(ADP-ribose) polymerase contributes to Sindbis virus and staurosporine-induced apoptotic cell death. Virology 293, 164–171.[CrossRef] [Google Scholar]
  55. Neuvonen, M. & Ahola, T.(2009). Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites. J Mol Biol 385, 212–225.[CrossRef] [Google Scholar]
  56. Nusinow, D. A., Hernández-Muñoz, I., Fazzio, T. G., Shah, G. M., Kraus, W. L. & Panning, B.(2007). Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J Biol Chem 282, 12851–12859.[CrossRef] [Google Scholar]
  57. Park, E. & Griffin, D. E.(2009). The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice. Virology 388, 305–314.[CrossRef] [Google Scholar]
  58. Pavri, R., Lewis, B., Kim, T. K., Dilworth, F. J., Erdjument-Bromage, H., Tempst, P., de Murcia, G., Evans, R., Chambon, P. & Reinberg, D.(2005). PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 18, 83–96.[CrossRef] [Google Scholar]
  59. Pehrson, J. R. & Fried, V. A.(1992). MacroH2A, a core histone containing a large nonhistone region. Science 257, 1398–1400.[CrossRef] [Google Scholar]
  60. Pehrson, J. R. & Fuji, R. N.(1998). Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res 26, 2837–2842.[CrossRef] [Google Scholar]
  61. Peranen, J.(1991). Localization and phosphorylation of Semliki Forest virus nonstructural protein nsP3 expressed in COS cells from a cloned cDNA. J Gen Virol 72, 195–199.[CrossRef] [Google Scholar]
  62. Peranen, J. & Kaariainen, L.(1991). Biogenesis of type I cytopathic vacuoles in Semliki Forest virus-infected BHK cells. J Virol 65, 1623–1627. [Google Scholar]
  63. Peranen, J., Takkinen, K., Kalkkinen, N. & Kaariainen, L.(1988). Semliki Forest virus-specific non-structural protein nsP3 is a phosphoprotein. J Gen Virol 69, 2165–2178.[CrossRef] [Google Scholar]
  64. Scheidel, L. M., Durbin, R. K. & Stollar, V.(1987). Sindbis virus mutants resistant to mycophenolic acid and ribavirin. Virology 158, 1–7.[CrossRef] [Google Scholar]
  65. Schreiber, V., Dantzer, F., Ame, J. C. & de Murcia, G.(2006). Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7, 517–528.[CrossRef] [Google Scholar]
  66. Shirako, Y. & Strauss, J. H.(1994). Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J Virol 68, 1874–1885. [Google Scholar]
  67. Simbulan-Rosenthal, C. M., Rosenthal, D. S., Luo, R., Samara, R., Espinoza, L. A., Hassa, P. O., Hottiger, M. O. & Smulson, M. E.(2003). PARP-1 binds E2F-1 independently of its DNA binding and catalytic domains, and acts as a novel coactivator of E2F-1-mediated transcription during re-entry of quiescent cells into S phase. Oncogene 22, 8460–8471.[CrossRef] [Google Scholar]
  68. Southan, G. J. & Szabo, C.(2003). Poly(ADP-ribose) polymerase inhibitors. Curr Med Chem 10, 321–340.[CrossRef] [Google Scholar]
  69. Tomar, S., Hardy, R. W., Smith, J. L. & Kuhn, R. J.(2006). Catalytic core of alphavirus nonstructural protein nsP4 possesses terminal adenylyltransferase activity. J Virol 80, 9962–9969.[CrossRef] [Google Scholar]
  70. Ubol, S., Park, S., Budihardjo, I., Desnoyers, S., Montrose, M. H., Poirier, G. G., Kaufmann, S. H. & Griffin, D. E.(1996). Temporal changes in chromatin, intracellular calcium, and poly(ADP-ribose) polymerase during Sindbis virus-induced apoptosis of neuroblastoma cells. J Virol 70, 2215–2220. [Google Scholar]
  71. Vasiljeva, L., Merits, A., Auvinen, P. & Kaariainen, L.(2000). Identification of a novel function of the alphavirus capping apparatus. RNA 5′-triphosphatase activity of nsP2. J Biol Chem 275, 17281–17287.[CrossRef] [Google Scholar]
  72. Vihinen, H. & Saarinen, J.(2000). Phosphorylation site analysis of Semliki Forest virus nonstructural protein 3. J Biol Chem 275, 27775–27783. [Google Scholar]
  73. Vihinen, H., Ahola, T., Tuittila, M., Merits, A. & Kaariainen, L.(2001). Elimination of phosphorylation sites of Semliki Forest virus replicase protein nsP3. J Biol Chem 276, 5745–5752.[CrossRef] [Google Scholar]
  74. Visochek, L., Steingart, R. A., Vulih-Shultzman, I., Klein, R., Priel, E., Gozes, I. & Cohen-Armon, M.(2005). PolyADP-ribosylation is involved in neurotrophic activity. J Neurosci 25, 7420–7428.[CrossRef] [Google Scholar]
  75. Walker, J. W., Jijon, H. B. & Madsen, K. L.(2006). AMP-activated protein kinase is a positive regulator of poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 342, 336–341.[CrossRef] [Google Scholar]
  76. Wang, Y. F., Sawicki, S. G. & Sawicki, D. L.(1994). Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA. J Virol 68, 6466–6475. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error