Sorting signals in the measles virus wild-type glycoproteins differently influence virus spread in polarized epithelia and lymphocytes Free

Abstract

The spread of virus infection within an organism is partially dictated by the receptor usage of the virus and can be influenced by sorting signals present in the viral glycoproteins expressed in infected cells. In previous studies, we have shown that the haemagglutinin (H) and fusion protein (F) of the measles virus (MV) vaccine strain MV harbour tyrosine-dependent sorting signals which influence virus spread in both lymphocytes and epithelial cells to a similar degree. In contrast with the vaccine strain, MV wild-type virus does not use CD46 but CD150/SLAM and a not clearly identified molecule on epithelial cells as receptors. To determine differences in viral spread between vaccine and wild-type virus, we generated recombinant MV expressing glycoproteins of both the wild-type strain WTFb and the corresponding tyrosine mutants. In contrast with observations based on vaccine virus glycoproteins, mutations in wild-type virus H and F differently influenced cell-to-cell fusion and replication in polarized epithelia and lymphocytes. For wild-type H, our data suggest a key role of the cytoplasmic tyrosine signal for virus dissemination . It seems to be important for efficient virus spread between lymphocytes, while the tyrosine signal in the F protein gains importance in epithelial cells as both signals have to be intact to allow efficient spread of infection within epithelia.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012575-0
2009-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/10/2474.html?itemId=/content/journal/jgv/10.1099/vir.0.012575-0&mimeType=html&fmt=ahah

References

  1. Alkhatib G., Shen S. H., Briedis D., Richardson C., Massie B., Weinberg R., Smith D., Taylor J., Paoletti E., Roder J. 1994; Functional analysis of N -linked glycosylation mutants of the measles virus fusion protein synthesized by recombinant vaccinia virus vectors. J Virol 68:1522–1531
    [Google Scholar]
  2. Cathomen T., Buchholz C. J., Spielhofer P., Cattaneo R. 1995; Preferential initiation at the second AUG of the measles virus F mRNA: a role for the long untranslated region. Virology 214:628–632 [CrossRef]
    [Google Scholar]
  3. Cathomen T., Mrkic B., Spehner D., Drillien R., Naef R., Pavlovic J., Aguzzi A., Billeter M. A., Cattaneo R. 1998a; A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17:3899–3908 [CrossRef]
    [Google Scholar]
  4. Cathomen T., Naim H. Y., Cattaneo R. 1998b; Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 72:1224–1234
    [Google Scholar]
  5. de Swart R. L. 2008; The pathogenesis of measles revisited. Pediatr Infect Dis J 27:S84–S88 [CrossRef]
    [Google Scholar]
  6. de Swart R. L., Ludlow M., de Witte L., Yanagi Y., van Amerongen G., McQuaid S., Yuksel S., Geijtenbeek T. B., Duprex W. P., Osterhaus A. D. 2007; Predominant infection of CD150+ lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3:e178 [CrossRef]
    [Google Scholar]
  7. de Witte L., Abt M., Schneider-Schaulies S., van Kooyk Y., Geijtenbeek T. B. 2006; Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80:3477–3486 [CrossRef]
    [Google Scholar]
  8. Dorig R. E., Marcil A., Richardson C. D. 1994; CD46, a primate-specific receptor for measles virus. Trends Microbiol 2:312–318 [CrossRef]
    [Google Scholar]
  9. Duffield A., Caplan M. J., Muth T. R. 2008; Protein trafficking in polarized cells. Int Rev Cell Mol Biol 270:145–179
    [Google Scholar]
  10. Hu A., Cattaneo R., Schwartz S., Norrby E. 1994; Role of N -linked oligosaccharide chains in the processing and antigenicity of measles virus haemagglutinin protein. J Gen Virol 75:1043–1052 [CrossRef]
    [Google Scholar]
  11. Johnston I. C., ter Meulen V., Schneider-Schaulies J., Schneider-Schaulies S. 1999; A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism. J Virol 73:6903–6915
    [Google Scholar]
  12. Leonard V. H., Sinn P. L., Hodge G., Miest T., Devaux P., Oezguen N., Braun W., McCray P. B. Jr, McChesney M. B., Cattaneo R. 2008; Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J Clin Invest 118:2448–2458
    [Google Scholar]
  13. Lindemann D., Pietschmann T., Picard-Maureau M., Berg A., Heinkelein M., Thurow J., Knaus P., Zentgraf H., Rethwilm A. 2001; A particle-associated glycoprotein signal peptide essential for virus maturation and infectivity. J Virol 75:5762–5771 [CrossRef]
    [Google Scholar]
  14. Maisner A., Klenk H., Herrler G. 1998; Polarized budding of measles virus is not determined by viral surface glycoproteins. J Virol 72:5276–5278
    [Google Scholar]
  15. Moll M., Klenk H. D., Maisner A. 2002; Importance of the cytoplasmic tails of the measles virus glycoproteins for fusogenic activity and the generation of recombinant measles viruses. J Virol 76:7174–7186 [CrossRef]
    [Google Scholar]
  16. Moll M., Pfeuffer J., Klenk H. D., Niewiesk S., Maisner A. 2004; Polarized glycoprotein targeting affects the spread of measles virus in vitro and in vivo . J Gen Virol 85:1019–1027 [CrossRef]
    [Google Scholar]
  17. Muth T. R., Caplan M. J. 2003; Transport protein trafficking in polarized cells. Annu Rev Cell Dev Biol 19:333–366 [CrossRef]
    [Google Scholar]
  18. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032
    [Google Scholar]
  19. Niewiesk S. 2009; Current animal models: cotton rat animal model. Curr Top Microbiol Immunol 330:89–110
    [Google Scholar]
  20. Ono N., Tatsuo H., Hidaka Y., Aoki T., Minagawa H., Yanagi Y. 2001; Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401 [CrossRef]
    [Google Scholar]
  21. Pfeuffer J., Puschel K., Meulen V., Schneider-Schaulies J., Niewiesk S. 2003; Extent of measles virus spread and immune suppression differentiates between wild-type and vaccine strains in the cotton rat model ( Sigmodon hispidus ). J Virol 77:150–158 [CrossRef]
    [Google Scholar]
  22. Rima B. K., Duprex W. P. 2006; Morbilliviruses and human disease. J Pathol 208:199–214 [CrossRef]
    [Google Scholar]
  23. Rodriguez-Boulan E., Kreitzer G., Musch A. 2005; Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6:233–247 [CrossRef]
    [Google Scholar]
  24. Runkler N., Dietzel E., Moll M., Klenk H. D., Maisner A. 2008; Glycoprotein targeting signals influence the distribution of measles virus envelope proteins and virus spread in lymphocytes. J Gen Virol 89:687–696 [CrossRef]
    [Google Scholar]
  25. Scheiffele P., Peranen J., Simons K. 1995; N -glycans as apical sorting signals in epithelial cells. Nature 378:96–98 [CrossRef]
    [Google Scholar]
  26. Schuck S., Simons K. 2004; Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117:5955–5964 [CrossRef]
    [Google Scholar]
  27. Tahara M., Takeda M., Shirogane Y., Hashiguchi T., Ohno S., Yanagi Y. 2008; Measles virus infects both polarized epithelial and immune cells by using distinctive receptor-binding sites on its hemagglutinin. J Virol 82:4630–4637 [CrossRef]
    [Google Scholar]
  28. Takeda M. 2008; Measles virus breaks through epithelial cell barriers to achieve transmission. J Clin Invest 118:2386–2389
    [Google Scholar]
  29. Takeda M., Tahara M., Hashiguchi T., Sato T. A., Jinnouchi F., Ueki S., Ohno S., Yanagi Y. 2007; A human lung carcinoma cell line supports efficient measles virus growth and syncytium formation via a SLAM- and CD46-independent mechanism. J Virol 81:12091–12096 [CrossRef]
    [Google Scholar]
  30. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897 [CrossRef]
    [Google Scholar]
  31. Weidmann A., Fischer C., Ohgimoto S., Ruth C., ter Meulen V., Schneider-Schaulies S. 2000; Measles virus-induced immunosuppression in vitro is independent of complex glycosylation of viral glycoproteins and of hemifusion. J Virol 74:7548–7553 [CrossRef]
    [Google Scholar]
  32. WHO 2008; Fact sheet 286: measles. http://www.who.int/mediacentre/factsheets/fs286/en/
  33. Yanagi Y., Takeda M., Ohno S. 2006; Measles virus: cellular receptors, tropism and pathogenesis. J Gen Virol 87:2767–2779 [CrossRef]
    [Google Scholar]
  34. Yeaman C., Le Gall A. H., Baldwin A. N., Monlauzeur L., Le Bivic A., Rodriguez-Boulan E. 1997; The O -glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J Cell Biol 139:929–940 [CrossRef]
    [Google Scholar]
  35. Zhu J., Zhang C. W., Qi Y., Tien P., Gao G. F. 2002; The fusion protein core of measles virus forms stable coiled-coil trimer. Biochem Biophys Res Commun 299:897–902 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012575-0
Loading
/content/journal/jgv/10.1099/vir.0.012575-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed