1887

Abstract

Tick-borne encephalitis virus (TBEV) plays an important role in infectious human morbidity, particularly in Russia and the Middle Urals. The Siberian subtype of TBEV (S-TBEV) is dominant in the Middle Urals. Determining the origin of S-TBEV strains in this territory and also in the European part of Russia and the Baltic countries is very important for understanding the cause of its distribution. The surface glycoprotein E gene was partially sequenced in 165 S-TBEV isolates collected in the Middle Urals between 1966 and 2008. Nucleotide and amino acid sequence identity of the studied isolates is 94 and 97.4 %, respectively. Eighty per cent of them are represented by six clusters with identical amino acid sequences in the glycoprotein E fragment analysed. We have determined four types of isolate distribution in the explored territory: local, split, corridor and diffuse. The average rate of nucleotide substitutions per site year is estimated to be 1.56×10. The age of the S-TBEV population was evaluated to be slightly less than 400 years. Phylogenetic analysis of the data and comparison with historical events indicate that the distribution of S-TBEV strains in the Middle Urals and the European part of Russia originated twice from different foci in western Siberia. This is related to the first land road into Siberia and the Trans-Siberian Way, which functioned at different times. The main reason for such rapid distribution of S-TBEV strains is the anthropogenic factor, i.e. human economic activity during the colonization of new territories in Siberia in the recent past.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.012419-0
2009-12-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/12/2884.html?itemId=/content/journal/jgv/10.1099/vir.0.012419-0&mimeType=html&fmt=ahah

References

  1. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. ( 1990; ). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649–688.[CrossRef]
    [Google Scholar]
  2. Ecker, M., Allison, S. L., Meixner, T. & Heinz, F. X. ( 1999; ). Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J Gen Virol 80, 179–185.
    [Google Scholar]
  3. Gao, G. F., Hussain, M. H., Reid, H. W. & Gould, E. A. ( 1993; ). Classification of a new member of the TBE flavivirus subgroup by its immunological, pathogenetic and molecular characteristics: identification of subgroup-specific pentapeptides. Virus Res 30, 129–144.[CrossRef]
    [Google Scholar]
  4. Golovljova, I., Katargina, O., Geller, J., Tallo, T., Mittzenkov, V., Vene, S., Nemirov, K., Kutsenko, A., Kilosanidze, G. & other authors ( 2008; ). Unique signature amino acid substitution in Baltic tick-borne encephalitis virus (TBEV) strains within the Siberian TBEV subtype. Int J Med Microbiol 298 (Suppl. 1), 108–120.[CrossRef]
    [Google Scholar]
  5. Grard, G., Moureau, G., Charrel, R. N., Lemasson, J. J., Gonzalez, J. P., Gallian, P., Gritsun, T. S., Holmes, E. C., Gould, E. A. & de Lamballerie, X. ( 2007; ). Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology 361, 80–92.[CrossRef]
    [Google Scholar]
  6. Gritsun, T. S., Frolova, T. V., Zhankov, A. I., Armesto, M., Turner, S. L., Frolova, M. P., Pogodina, V. V., Lashkevich, V. A. & Gould, E. A. ( 2003; ). Characterization of a Siberian virus isolated from a patient with progressive chronic tick-borne encephalitis. J Virol 77, 25–36.[CrossRef]
    [Google Scholar]
  7. Haglund, M., Vene, S., Forsgren, M., Gunther, G., Johansson, B., Niedrig, M., Plyusnin, A., Lindquist, L. & Lundkvist, A. ( 2003; ). Characterisation of human tick-borne encephalitis virus from Sweden. J Med Virol 71, 610–621.[CrossRef]
    [Google Scholar]
  8. Hayasaka, D., Suzuki, Y., Kariwa, H., Ivanov, L., Volkov, V., Demenev, V., Mizutani, T., Gojobori, T. & Takashima, I. ( 1999; ). Phylogenetic and virulence analysis of tick-borne encephalitis viruses from Japan and far-eastern Russia. J Gen Virol 80, 3127–3135.
    [Google Scholar]
  9. Hoogstraal, H., Kaiser, M. N., Traylor, M. A., Guindy, E. & Gaber, S. ( 1963; ). Ticks (Ixodidae) on birds migrating from Europe and Asia to Africa 1959–61. Bull World Health Organ 28, 235–262.
    [Google Scholar]
  10. Jaaskelainen, A. E., Tikkakoski, T., Uzcategui, N. Y., Alekseev, A. N., Vaheri, A. & Vapalahti, O. ( 2006; ). Siberian subtype tickborne encephalitis virus, Finland. Emerg Infect Dis 12, 1568–1571.[CrossRef]
    [Google Scholar]
  11. Konnai, S., Saito, Y., Nishikado, H., Yamada, S., Imamura, S., Mori, A., Ito, T., Onuma, M. & Ohashi, K. ( 2008; ). Establishment of a laboratory colony of taiga tick Ixodes persulcatus for tick-borne pathogen transmission studies. Jpn J Vet Res 55, 85–92.
    [Google Scholar]
  12. Kovalev, S. Iu., Umpeleva, T. V., Snitkovskaia, T. E., Kiliatsina, A. S., Romanenko, V. V., Kokorev, V. S. & Glinskikh, N. P. ( 2008; ). Molecular and epidemiological characteristics of tick-borne encephalitis virus in the Sverdlovsk region on the basis of genotype-specific RT-PCR. Vopr Virusol 53, 27–31 (in Russian).
    [Google Scholar]
  13. Labuda, M., Jones, L. D., Williams, T., Danielova, V. & Nuttall, P. A. ( 1993; ). Efficient transmission of tick-borne encephalitis virus between cofeeding ticks. J Med Entomol 30, 295–299.[CrossRef]
    [Google Scholar]
  14. Lee, E., Weir, R. C. & Dalgarno, L. ( 1997; ). Changes in the dengue virus major envelope protein on passaging and their localization on the three-dimensional structure of the protein. Virology 232, 281–290.[CrossRef]
    [Google Scholar]
  15. Li, W. H., Tanimura, M. & Sharp, P. M. ( 1988; ). Rates and dates of divergence between AIDS virus nucleotide sequences. Mol Biol Evol 5, 313–330.
    [Google Scholar]
  16. Lundkvist, Å., Vene, S., Golovljova, I., Mavtchoutko, V., Forsgren, M., Kalnina, V. & Plyusnin, A. ( 2001; ). Characterization of tick-borne encephalitis virus from Latvia: evidence for co-circulation of three distinct subtypes. J Med Virol 65, 730–735.[CrossRef]
    [Google Scholar]
  17. Mandl, C. W., Heinz, F. X. & Kunz, C. ( 1988; ). Sequence of the structural proteins of tick-borne encephalitis virus (western subtype) and comparative analysis with other flaviviruses. Virology 166, 197–205.[CrossRef]
    [Google Scholar]
  18. Mandl, C. W., Holzmann, H., Kunz, C. & Heinz, F. X. ( 1993; ). Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses. Virology 194, 173–184.[CrossRef]
    [Google Scholar]
  19. Marin, M. S., Zanotto, P. M., Gritsun, T. S. & Gould, E. A. ( 1995; ). Phylogeny of TYU, SRE, and CFA virus: different evolutionary rates in the genus Flavivirus. Virology 206, 1133–1139.[CrossRef]
    [Google Scholar]
  20. McGuire, K., Holmes, E. C., Gao, G. F., Reid, H. W. & Gould, E. A. ( 1998; ). Tracing the origins of louping ill virus by molecular phylogenetic analysis. J Gen Virol 79, 981–988.
    [Google Scholar]
  21. Mickiene, A., Vene, S., Golovljova, I., Laiskonis, A., Lindquist, L., Plyusnin, A. & Lundkvist, A. ( 2001; ). Tick-borne encephalitis virus in Lithuania. Eur J Clin Microbiol Infect Dis 20, 886–888.[CrossRef]
    [Google Scholar]
  22. Romanova, L. Iu., Gmyl, A. P., Dzhivanian, T. I., Bakhmutov, D. V., Lukashev, A. N., Gmyl, L. V., Rumyantsev, A. A., Burenkova, L. A., Lashkevich, V. A. & Karganova, G. G. ( 2007; ). Microevolution of tick-borne encephalitis virus in course of host alternation. Virology 362, 75–84.[CrossRef]
    [Google Scholar]
  23. Rzhetsky, A. & Nei, M. ( 1992; ). A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9, 945–967.
    [Google Scholar]
  24. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  25. Shiu, S. Y., Ayres, M. D. & Gould, E. A. ( 1991; ). Genomic sequence of the structural proteins of louping ill virus: comparative analysis with tick-borne encephalitis virus. Virology 180, 411–415.[CrossRef]
    [Google Scholar]
  26. Shiu, S. Y., Jiang, W. R., Porterfield, J. S. & Gould, E. A. ( 1992; ). Envelope protein sequences of dengue virus isolates TH-36 and TH-Sman, and identification of a type-specific genetic marker for dengue and tick-borne flaviviruses. J Gen Virol 73, 207–212.[CrossRef]
    [Google Scholar]
  27. Suzuki, Y. ( 2007; ). Multiple transmissions of tick-borne encephalitis virus between Japan and Russia. Genes Genet Syst 82, 187–195.[CrossRef]
    [Google Scholar]
  28. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  29. Ternovoi, V. A., Kurzhukov, G. P., Sokolov, Y. V., Ivanov, G. Y., Ivanisenko, V. A., Loktev, A. V., Ryder, R. W., Netesov, S. V. & Loktev, V. B. ( 2003; ). Tick-borne encephalitis with hemorrhagic syndrome, Novosibirsk region, Russia, 1999. Emerg Infect Dis 9, 743–746.[CrossRef]
    [Google Scholar]
  30. Waldenstrom, J., Lundkvist, A., Falk, K. I., Garpmo, U., Bergstrom, S., Lindegren, G., Sjostedt, A., Mejlon, H., Fransson, T. & other authors ( 2007; ). Migrating birds and tickborne encephalitis virus. Emerg Infect Dis 13, 1215–1218.[CrossRef]
    [Google Scholar]
  31. Zanotto, P. M., Gao, G. F., Gritsun, T., Marin, M. S., Jiang, W. R., Venugopal, K., Reid, H. W. & Gould, E. A. ( 1995; ). An arbovirus cline across the northern hemisphere. Virology 210, 152–159.[CrossRef]
    [Google Scholar]
  32. Zanotto, P. M., Gould, E. A., Gao, G. F., Harvey, P. H. & Holmes, E. C. ( 1996; ). Population dynamics of flaviviruses revealed by molecular phylogenies. Proc Natl Acad Sci U S A 93, 548–553.[CrossRef]
    [Google Scholar]
  33. Zuckerkandl, E. & Pauling, L. ( 1965; ). Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins. Edited by V. Bryson & H. Vogel. New York: Academic Press.
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.012419-0
Loading
/content/journal/jgv/10.1099/vir.0.012419-0
Loading

Data & Media loading...

Supplements

TBEV strains compared by phylogenetic analysis and amino acid alignment of the fragment E glycoprotein [ PDF] (535 KB)

PDF

Phylogenetic tree of S-TBEV strains based on gene E fragment sequences [ PDF] (1.4 MB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error