1887

Abstract

The Toll-like receptor (TLR) 7 response represents a vital host-defence mechanism in a murine model of systemic West Nile virus (WNV) infection. Here, we investigated the role of the TLR7-induced immune response following cutaneous WNV infection. We found that there was no difference in susceptibility to WNV encephalitis between wild-type and TLR7 mice upon intradermal injection or infected mosquito feeding. Viral load analysis revealed similar levels of WNV RNA in the peripheral tissues and brains of these two groups of mice following intradermal infection. There was a higher level of cytokines in the blood of wild-type mice at early stages of infection; however, this difference was diminished in the blood and brains at later stages. Langerhans cells (LCs) are permissive to WNV infection and migrate from the skin to draining lymph nodes upon intradermal challenge. Our data showed that WNV infection of TLR7 keratinocytes was significantly higher than that of wild-type keratinocytes. Infection of wild-type keratinocytes induced higher levels of alpha interferon and interleukin-1 (IL-1), IL-6 and IL-12, which might promote LC migration from the skin. Co-culture of naïve LCs of wild-type mice with WNV-infected wild-type keratinocytes resulted in the production of more IL-6 and IL-12 than with TLR7 keratinocytes or by cultured LCs alone. Moreover, LCs in the epidermis were reduced in wild-type mice, but not in TLR7 mice, following intradermal WNV infection. Overall, our results suggest that the TLR7 response following cutaneous infection promotes LC migration from the skin, which might compromise its protective effect in systemic infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.011783-0
2009-11-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/11/2660.html?itemId=/content/journal/jgv/10.1099/vir.0.011783-0&mimeType=html&fmt=ahah

References

  1. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. ( 2001; ). Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738.[CrossRef]
    [Google Scholar]
  2. Anderson, J. F. & Rahal, J. J. ( 2002; ). Efficacy of interferon alpha-2b and ribavirin against West Nile virus in vitro. Emerg Infect Dis 8, 107–108.[CrossRef]
    [Google Scholar]
  3. Asahina, A. & Tamaki, K. ( 2006; ). Role of Langerhans cells in cutaneous protective immunity: is the reappraisal necessary? J Dermatol Sci 44, 1–9.[CrossRef]
    [Google Scholar]
  4. Beasley, D. W., Li, L., Suderman, M. T. & Barrett, A. D. ( 2002; ). Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296, 17–23.[CrossRef]
    [Google Scholar]
  5. Bennett, S. R., Carbone, F. R., Karamalis, F., Flavell, R. A., Miller, J. F. & Heath, W. R. ( 1998; ). Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480.[CrossRef]
    [Google Scholar]
  6. Bieback, K., Lien, E., Klagge, I. M., Avota, E., Schneider-Schaulies, J., Duprex, W. P., Wagner, H., Kirschning, C. J., Ter Meulen, V. & Schneider-Schaulies, S. ( 2002; ). Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J Virol 76, 8729–8736.[CrossRef]
    [Google Scholar]
  7. Burke, S. A., Wen, L. & King, N. J. ( 2004; ). Routes of inoculation and the immune response to a resolving genital flavivirus infection in a novel murine model. Immunol Cell Biol 82, 174–183.[CrossRef]
    [Google Scholar]
  8. Byrne, S. N., Halliday, G. M., Johnston, L. J. & King, N. J. ( 2001; ). Interleukin-1β but not tumor necrosis factor is involved in West Nile virus-induced Langerhans cell migration from the skin in C57BL/6 mice. J Invest Dermatol 117, 702–709.[CrossRef]
    [Google Scholar]
  9. Campbell, G. L., Marfin, A. A., Lanciotti, R. S. & Gubler, D. J. ( 2002; ). West Nile virus. Lancet Infect Dis 2, 519–529.[CrossRef]
    [Google Scholar]
  10. Cella, M., Scheidegger, D., Palmer-Lehmann, K., Lane, P., Lanzavecchia, A. & Alber, G. ( 1996; ). Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T–T help via APC activation. J Exp Med 184, 747–752.[CrossRef]
    [Google Scholar]
  11. Conti, L., Casetti, R., Cardone, M., Varano, B., Martino, A., Belardelli, F., Poccia, F. & Gessani, S. ( 2005; ). Reciprocal activating interaction between dendritic cells and pamidronate-stimulated γδ T cells: role of CD86 and inflammatory cytokines. J Immunol 174, 252–260.[CrossRef]
    [Google Scholar]
  12. Daffis, S., Samuel, M. A., Suthar, M. S., Gale, M., Jr & Diamond, M. S. ( 2008; ). Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82, 10349–10358.[CrossRef]
    [Google Scholar]
  13. Diamond, M. S., Shrestha, B., Marri, A., Mahan, D. & Engle, M. ( 2003; ). B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77, 2578–2586.[CrossRef]
    [Google Scholar]
  14. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis, E. S. C. ( 2004; ). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531.[CrossRef]
    [Google Scholar]
  15. Dieli, F., Caccamo, N., Meraviglia, S., Ivanyi, J., Sireci, G., Bonanno, C. T., Ferlazzo, V., La Mendola, C. & Salerno, A. ( 2004; ). Reciprocal stimulation of γδ T cells and dendritic cells during the anti-mycobacterial immune response. Eur J Immunol 34, 3227–3235.[CrossRef]
    [Google Scholar]
  16. Flacher, V., Bouschbacher, M., Verronese, E., Massacrier, C., Sisirak, V., Berthier-Vergnes, O., de Saint-Vis, B., Caux, C., Dezutter-Dambuyant, C. & other authors ( 2006; ). Human Langerhans cells express a specific TLR profile and differentially respond to viruses and Gram-positive bacteria. J Immunol 177, 7959–7967.[CrossRef]
    [Google Scholar]
  17. Fredericksen, B. L., Keller, B. C., Fornek, J., Katze, M. G. & Gale, M., Jr ( 2008; ). Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol 82, 609–616.[CrossRef]
    [Google Scholar]
  18. Furue, M., Chang, C. H. & Tamaki, K. ( 1996; ). Interleukin-1 but not tumour necrosis factor alpha synergistically upregulates the granulocyte-macrophage colony-stimulating factor-induced B7-1 expression of murine Langerhans cells. Br J Dermatol 135, 194–198.[CrossRef]
    [Google Scholar]
  19. Granwehr, B. P., Lillibridge, K. M., Higgs, S., Mason, P. W., Aronson, J. F., Campbell, G. A. & Barrett, A. D. ( 2004; ). West Nile virus: where are we now? Lancet Infect Dis 4, 547–556.[CrossRef]
    [Google Scholar]
  20. Johnston, L. J., Halliday, G. M. & King, N. J. ( 1996; ). Phenotypic changes in Langerhans' cells after infection with arboviruses: a role in the immune response to epidermally acquired viral infection? J Virol 70, 4761–4766.
    [Google Scholar]
  21. Johnston, L. J., Halliday, G. M. & King, N. J. ( 2000; ). Langerhans cells migrate to local lymph nodes following cutaneous infection with an arbovirus. J Invest Dermatol 114, 560–568.[CrossRef]
    [Google Scholar]
  22. Kalali, B. N., Kollisch, G., Mages, J., Muller, T., Bauer, S., Wagner, H., Ring, J., Lang, R., Mempel, M. & Ollert, M. ( 2008; ). Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling. J Immunol 181, 2694–2704.[CrossRef]
    [Google Scholar]
  23. Klein, R. S., Lin, E., Zhang, B., Luster, A. D., Tollett, J., Samuel, M. A., Engle, M. & Diamond, M. S. ( 2005; ). Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 79, 11457–11466.[CrossRef]
    [Google Scholar]
  24. Koch, F., Stanzl, U., Jennewein, P., Janke, K., Heufler, C., Kampgen, E., Romani, N. & Schuler, G. ( 1996; ). High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10. J Exp Med 184, 741–746.[CrossRef]
    [Google Scholar]
  25. Kulkarni, A. B., Mullbacher, A. & Blanden, R. V. ( 1991; ). Functional analysis of macrophages, B cells and splenic dendritic cells as antigen-presenting cells in West Nile virus-specific murine T lymphocyte proliferation. Immunol Cell Biol 69, 71–80.[CrossRef]
    [Google Scholar]
  26. Kurt-Jones, E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., Walsh, E. E., Freeman, M. W., Golenbock, D. T. & other authors ( 2000; ). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1, 398–401.[CrossRef]
    [Google Scholar]
  27. Lanciotti, R. S., Kerst, A. J., Nasci, R. S., Godsey, M. S., Mitchell, C. J., Savage, H. M., Komar, N., Panella, N. A., Allen, B. C. & other authors ( 2000; ). Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38, 4066–4071.
    [Google Scholar]
  28. Lichti, U., Anders, J. & Yuspa, S. H. ( 2008; ). Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc 3, 799–810.[CrossRef]
    [Google Scholar]
  29. Longley, J., Ding, T. G., Levin, D., Lewis, J., Edelson, R., Tigelaar, R. & Flavell, R. ( 1995; ). Regulation of transgenic class II major histocompatibility genes in murine Langerhans cells. J Invest Dermatol 104, 329–334.[CrossRef]
    [Google Scholar]
  30. Lucas, M., Mashimo, T., Frenkiel, M. P., Simon-Chazottes, D., Montagutelli, X., Ceccaldi, P. E., Guenet, J. L. & Despres, P. ( 2003; ). Infection of mouse neurones by West Nile virus is modulated by the interferon-inducible 2′–5′ oligoadenylate synthetase 1b protein. Immunol Cell Biol 81, 230–236.[CrossRef]
    [Google Scholar]
  31. Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N. C., Gale, N. W., Iwasaki, A. & Flavell, R. A. ( 2004; ). Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci U S A 101, 5598–5603.[CrossRef]
    [Google Scholar]
  32. Mitsui, H., Watanabe, T., Saeki, H., Mori, K., Fujita, H., Tada, Y., Asahina, A., Nakamura, K. & Tamaki, K. ( 2004; ). Differential expression and function of Toll-like receptors in Langerhans cells: comparison with splenic dendritic cells. J Invest Dermatol 122, 95–102.[CrossRef]
    [Google Scholar]
  33. Pletnev, A. G., Swayne, D. E., Speicher, J., Rumyantsev, A. A. & Murphy, B. R. ( 2006; ). Chimeric West Nile/dengue virus vaccine candidate: preclinical evaluation in mice, geese and monkeys for safety and immunogenicity. Vaccine 24, 6392–6404.[CrossRef]
    [Google Scholar]
  34. Qureshi, S. T. & Medzhitov, R. ( 2003; ). Toll-like receptors and their role in experimental models of microbial infection. Genes Immun 4, 87–94.[CrossRef]
    [Google Scholar]
  35. Rassa, J. C., Meyers, J. L., Zhang, Y., Kudaravalli, R. & Ross, S. R. ( 2002; ). Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc Natl Acad Sci U S A 99, 2281–2286.[CrossRef]
    [Google Scholar]
  36. Ridge, J. P., Di Rosa, F. & Matzinger, P. ( 1998; ). A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478.[CrossRef]
    [Google Scholar]
  37. Roehrig, J. T., Staudinger, L. A., Hunt, A. R., Mathews, J. H. & Blair, C. D. ( 2001; ). Antibody prophylaxis and therapy for flavivirus encephalitis infections. Ann N Y Acad Sci 951, 286–297.
    [Google Scholar]
  38. Salgado, C. G., Nakamura, K., Sugaya, M., Tada, Y., Asahina, A., Koyama, Y., Irie, S. & Tamaki, K. ( 1999; ). Functional CD40 ligand is expressed on epidermal Langerhans cells. J Leukoc Biol 66, 281–285.
    [Google Scholar]
  39. Samuel, M. A. & Diamond, M. S. ( 2006; ). Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 80, 9349–9360.[CrossRef]
    [Google Scholar]
  40. Schneider, B. S., Soong, L., Girard, Y. A., Campbell, G., Mason, P. & Higgs, S. ( 2006; ). Potentiation of West Nile encephalitis by mosquito feeding. Viral Immunol 19, 74–82.[CrossRef]
    [Google Scholar]
  41. Shrestha, B., Samuel, M. A. & Diamond, M. S. ( 2006; ). CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol 80, 119–129.[CrossRef]
    [Google Scholar]
  42. Skallova, A., Iezzi, G., Ampenberger, F., Kopf, M. & Kopecky, J. ( 2008; ). Tick saliva inhibits dendritic cell migration, maturation, and function while promoting development of Th2 responses. J Immunol 180, 6186–6192.[CrossRef]
    [Google Scholar]
  43. Styer, L. M., Kent, K. A., Albright, R. G., Bennett, C. J., Kramer, L. D. & Bernard, K. A. ( 2007; ). Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog 3, 1262–1270.
    [Google Scholar]
  44. Tabeta, K., Georgel, P., Janssen, E., Du, X., Hoebe, K., Crozat, K., Mudd, S., Shamel, L., Sovath, S. & other authors ( 2004; ). Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101, 3516–3521.[CrossRef]
    [Google Scholar]
  45. Tissari, J., Siren, J., Meri, S., Julkunen, I. & Matikainen, S. ( 2005; ). IFN-α enhances TLR3-mediated antiviral cytokine expression in human endothelial and epithelial cells by up-regulating TLR3 expression. J Immunol 174, 4289–4294.[CrossRef]
    [Google Scholar]
  46. Town, T., Bai, F., Wang, T., Kaplan, A. T., Qian, F., Montgomery, R. R., Anderson, J. F., Flavell, R. A. & Fikrig, E. ( 2009; ). Toll-like receptor 7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity 30, 242–253.[CrossRef]
    [Google Scholar]
  47. Turell, M. J., Dohm, D. J., Sardelis, M. R., Oguinn, M. L., Andreadis, T. G. & Blow, J. A. ( 2005; ). An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42, 57–62.[CrossRef]
    [Google Scholar]
  48. Uchi, H., Koga, T., Urabe, K., Moroi, Y. & Furue, M. ( 2003; ). CX-659S, a diaminouracil derivative, indirectly inhibits the function of Langerhans cells by blocking the MEK1/2-Erk1/2 pathway in keratinocytes. J Invest Dermatol 120, 983–989.[CrossRef]
    [Google Scholar]
  49. Wang, T. & Fikrig, E. ( 2004; ). Immunity to West Nile virus. Curr Opin Immunol 16, 519–523.[CrossRef]
    [Google Scholar]
  50. Wang, T., Scully, E., Yin, Z., Kim, J. H., Wang, S., Yan, J., Mamula, M., Anderson, J. F., Craft, J. & Fikrig, E. ( 2003a; ). IFN-γ-producing γδ T cells help control murine West Nile virus infection. J Immunol 171, 2524–2531.[CrossRef]
    [Google Scholar]
  51. Wang, Y., Lobigs, M., Lee, E. & Mullbacher, A. ( 2003b; ). CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol 77, 13323–13334.[CrossRef]
    [Google Scholar]
  52. Wang, T., Town, T., Alexopoulou, L., Anderson, J. F., Fikrig, E. & Flavell, R. A. ( 2004; ). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10, 1366–1373.[CrossRef]
    [Google Scholar]
  53. Wang, J. P., Liu, P., Latz, E., Golenbock, D. T., Finberg, R. W. & Libraty, D. H. ( 2006; ). Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177, 7114–7121.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.011783-0
Loading
/content/journal/jgv/10.1099/vir.0.011783-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2660–2668

Neuronal and inflammatory pathology in wild-type and TLR7 mice [ PDF]



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error