1887

Abstract

We have investigated infection and pathogenesis of multiple nucleopolyhedrovirus (AcMNPV) in (velvetbean caterpillar) larvae using a recombinant virus (AcMNPV) to track the temporal progression of infection in the midgut intestine and haemocoel. was highly resistant to fatal infection by occlusion bodies (OBs; LD>5.5×10 OB) and budded virus (BV; LD>3×10 BV) administered via oral and systemic routes, respectively. Orally administered occlusion-derived virus (ODV) efficiently attached and fused to midgut cells; however, high levels of infection-induced apoptosis limited infection in the midgut. Transcriptional analysis of AcMNPV genes expressed in the midgut of OB-inoculated larvae showed high levels of mRNA encoding the major capsid protein VP39 in the absence of immediate-early transactivator 1 () expression. In the midgut, virus was efficiently transferred from infected midgut epithelial cells to nearby tracheolar cells and circulating haemocytes to initiate systemic infection in the haemocoel. However, haemocoelic BV did not efficiently disseminate infection and only cuticular epidermal cells displayed high levels of viral infection. Flow cytometry analysis of haemocytes isolated from BV-inoculated larvae showed low-level expression of the BV envelope protein GP64 on the cell surface, suggesting that haemocytes have a limited capacity for amplifying virus. These results show that AcMNPV is not an effective biological control agent for limiting crop damage caused by larvae.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.011718-0
2009-08-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/8/2023.html?itemId=/content/journal/jgv/10.1099/vir.0.011718-0&mimeType=html&fmt=ahah

References

  1. Blissard, G. W. & Rohrmann, G. F. ( 1989; ). Location, sequence, transcriptional mapping, and temporal expression of the gp64 envelope glycoprotein gene of the Orgyia pseudotsugata multicapsid nuclear polyhedrosis virus. Virology 170, 537–555.[CrossRef]
    [Google Scholar]
  2. Clarke, T. E. & Clem, R. J. ( 2003; ). In vivo induction of apoptosis correlating with reduced infectivity during baculovirus infection. J Virol 77, 2227–2232.[CrossRef]
    [Google Scholar]
  3. Clarke, P., Richardson-Burns, S. M., DeBiasi, R. L. & Tyler, K. L. ( 2005; ). Mechanisms of apoptosis during reovirus infection. Curr Top Microbiol Immunol 289, 1–24.
    [Google Scholar]
  4. Clem, R. J. ( 2007; ). Baculoviruses and apoptosis: a diversity of genes and responses. Curr Drug Targets 8, 1069–1074.[CrossRef]
    [Google Scholar]
  5. da Silveira, E. B., Cordeiro, B. A., Ribeiro, B. M. & Báo, S. N. ( 2005; ). In vivo apoptosis induction and reduction of infectivity by an Autographa californica multiple nucleopolyhedrovirus p35 recombinant in hemocytes from the velvet bean caterpillar Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae). Res Microbiol 156, 1014–1025.[CrossRef]
    [Google Scholar]
  6. Dee, K. U. & Shuler, M. L. ( 1997; ). Optimization of an assay for baculovirus titer and design of regimens for the synchronous infection of insect cells. Biotechnol Prog 13, 14–24.[CrossRef]
    [Google Scholar]
  7. Dougherty, E. M., Narang, N., Loeb, M., Lynn, D. E. & Shapiro, M. ( 2006; ). Fluorescent brightener inhibits apoptosis in baculovirus-infected gypsy moth larval midgut cells. Biocontrol Sci Technol 16, 157–168.[CrossRef]
    [Google Scholar]
  8. Eleftherianos, I., Gökçen, F., Felföldi, G., Millichap, P. J., Trenczek, T. E., ffrench-Constant, R. H. & Reynolds, S. E. ( 2007; ). The immunoglobulin family protein Hemolin mediates cellular immune responses to bacteria in the insect Manduca sexta. Cell Microbiol 9, 1137–1147.[CrossRef]
    [Google Scholar]
  9. Engelhard, E. K., Kammorgan, L. N. W., Washburn, J. O. & Volkman, L. E. ( 1994; ). The insect tracheal system – a conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc Natl Acad Sci U S A 91, 3224–3227.[CrossRef]
    [Google Scholar]
  10. Faulkner, P., Kuzio, J., Williams, G. V. & Wilson, J. A. ( 1997; ). Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo. J Gen Virol 78, 3091–3100.
    [Google Scholar]
  11. Goley, E. D., Ohkawa, T., Mancuso, J., Woodruff, J. B., D'Alessio, J. A., Cande, W. Z., Volkman, L. E. & Welch, M. D. ( 2006; ). Dynamic nuclear actin assembly by Arp2/3 complex and a baculovirus WASP-like protein. Science 314, 464–467.[CrossRef]
    [Google Scholar]
  12. Granados, R. R. ( 1978; ). Early events in the infection of Heliothis zea midgut cells by a baculovirus. Virology 90, 170–174.[CrossRef]
    [Google Scholar]
  13. Granados, R. R. & Lawler, K. A. ( 1981; ). In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108, 297–308.[CrossRef]
    [Google Scholar]
  14. Haas-Stapleton, E. J., Washburn, J. O. & Volkman, L. E. ( 2003; ). Pathogenesis of Autographa californica M nucleopolyhedrovirus in fifth instar Spodoptera frugiperda. J Gen Virol 84, 2033–2040.[CrossRef]
    [Google Scholar]
  15. Haas-Stapleton, E. J., Washburn, J. O. & Volkman, L. E. ( 2004; ). P74 mediates specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to primary cellular targets in the midgut epithelia of Heliothis virescens larvae. J Virol 78, 6786–6791.[CrossRef]
    [Google Scholar]
  16. Haas-Stapleton, E. J., Washburn, J. O. & Volkman, L. E. ( 2005; ). Spodoptera frugiperda resistance to oral infection by Autographa californica multiple nucleopolyhedrovirus linked to aberrant occlusion-derived virus binding in the midgut. J Gen Virol 86, 1349–1355.[CrossRef]
    [Google Scholar]
  17. Hawtin, R. E., Zarkowska, T., Arnold, K., Thomas, C. J., Gooday, G. W., King, L. A., Kuzio, J. A. & Possee, R. D. ( 1997; ). Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238, 243–253.[CrossRef]
    [Google Scholar]
  18. Hefferon, K. L. ( 2004; ). Baculovirus late expression factors. J Mol Microbiol Biotechnol 7, 89–101.[CrossRef]
    [Google Scholar]
  19. Hefferon, K. L., Oomens, A. G. P., Monsma, S. A., Finnerty, C. M. & Blissard, G. W. ( 1999; ). Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 258, 455–468.[CrossRef]
    [Google Scholar]
  20. Henke, A., Launhardt, H., Klement, K., Stelzner, A., Zell, R. & Munder, T. ( 2000; ). Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein Siva. J Virol 74, 4284–4290.[CrossRef]
    [Google Scholar]
  21. Herniou, E. A., Olszewski, J. A., O'Reilly, D. R. & Cory, J. S. ( 2004; ). Ancient coevolution of baculoviruses and their insect hosts. J Virol 78, 3244–3251.[CrossRef]
    [Google Scholar]
  22. Hirai, M., Terenius, O., Li, W. & Faye, I. ( 2004; ). Baculovirus and dsRNA induce Hemolin, but no antibacterial activity, in Antheraea pernyi. Insect Mol Biol 13, 399–405.[CrossRef]
    [Google Scholar]
  23. Hom, L. G., Ohkawa, T., Trudeau, D. & Volkman, L. E. ( 2002; ). Autographa californica M nucleopolyhedrovirus proV-CATH is activated during infected cell death. Virology 296, 212–218.[CrossRef]
    [Google Scholar]
  24. Kool, M. & Vlak, J. M. ( 1993; ). The structural and functional organization of the Autographa californica nuclear polyhedrosis virus genome. Arch Virol 130, 1–16.[CrossRef]
    [Google Scholar]
  25. Kuzio, J., Jaques, R. & Faulkner, P. ( 1989; ). Identification of p74, a gene essential for virulence of baculovirus occlusion bodies. Virology 173, 759–763.[CrossRef]
    [Google Scholar]
  26. Lacount, D. J. & Friesen, P. D. ( 1997; ). Role of early and late replication events in induction of apoptosis by baculoviruses. J Virol 71, 1530–1537.
    [Google Scholar]
  27. Merchant, D., Ertl, R. L., Rennard, S. I., Stanley, D. W. & Miller, J. S. ( 2008; ). Eicosanoids mediate insect hemocyte migration. J Insect Physiol 54, 215–221.[CrossRef]
    [Google Scholar]
  28. Monsma, S. A., Oomens, A. G. P. & Blissard, G. W. ( 1996; ). The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70, 4607–4616.
    [Google Scholar]
  29. Mortola, E., Noad, R. & Roy, P. ( 2004; ). Bluetongue virus outer capsid proteins are sufficient to trigger apoptosis in mammalian cells. J Virol 78, 2875–2883.[CrossRef]
    [Google Scholar]
  30. Mulock, B. & Faulkner, P. ( 1997; ). Field studies of a genetically modified baculovirus, Autographa californica nuclear polyhedrosis virus. J Invertebr Pathol 70, 33–40.[CrossRef]
    [Google Scholar]
  31. Oomens, A. G. P. & Blissard, G. W. ( 1999; ). Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology 254, 297–314.[CrossRef]
    [Google Scholar]
  32. Poole, B. D., Karetnyi, Y. V. & Naides, S. J. ( 2004; ). Parvovirus B19-induced apoptosis of hepatocytes. J Virol 78, 7775–7783.[CrossRef]
    [Google Scholar]
  33. Schultz, K. L. W., Wetter, J. A., Fiore, D. C. & Friesen, P. D. ( 2008; ). Transactivator IE1 is required for baculovirus early replication events that trigger apoptosis in permissive and nonpermissive cells. J Virol 83, 262–272.
    [Google Scholar]
  34. Summers, M. D. & Smith, G. E. ( 1987; ). A manual of methods for baculovirus vectors and insect cell culture procedures. Tex Agric Exp Stn Bull 1555, 1–57.
  35. Summers, M. D., Volkman, L. E. & Hsieh, C. ( 1978; ). Immunoperoxidase detection of baculovirus antigens in insect cells. J Gen Virol 40, 545–557.[CrossRef]
    [Google Scholar]
  36. Trudeau, D., Washburn, J. O. & Volkman, L. E. ( 2001; ). Central role of hemocytes in Autographa californica M nucleopolyhedrovirus pathogenesis in Heliothis virescens and Helicoverpa zea. J Virol 75, 996–1003.[CrossRef]
    [Google Scholar]
  37. Vail, P. V. ( 1993; ). Viruses for control of arthropod pests. In American Chemical Society Proceedings Series. Pest Management: Biologically Based Technologies, pp. 30–39. Edited by R. D. Lumsden & J. L. Vaughn. Washington, DC: American Chemical Society
  38. Vail, P. V., Hostetter, D. L. & Hoffmann, D. F. ( 1999; ). Development of the multi-nucleocapsid nucleopolyhedroviruses (MNPVs) infectious to loopers (Lepidoptera: Noctuidae: Plusiinae) as microbial control agents. Integrated Pest Management Reviews 4, 231–257.[CrossRef]
    [Google Scholar]
  39. Volkman, L. E. & Goldsmith, P. ( 1982; ). Generalized immunoassay for Autographa californica nuclear polyhedrosis virus infectivity in vitro. Appl Environ Microbiol 44, 227
    [Google Scholar]
  40. Washburn, J. O., Kirkpatrick, B. A. & Volkman, L. E. ( 1995; ). Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. Virology 209, 561–568.[CrossRef]
    [Google Scholar]
  41. Washburn, J. O., Kirkpatrick, B. A. & Volkman, L. E. ( 1996; ). Insect protection against viruses. Nature 383, 767 [CrossRef]
    [Google Scholar]
  42. Washburn, J. O., Kirkpatrick, B. A., Haas-Stapleton, E. & Volkman, L. E. ( 1998; ). Evidence that the stilbene-derived optical brightener M2R enhances Autographa californica M nucleopolyhedrovirus infection of Trichoplusia ni and Heliothis virescens by preventing sloughing of infected midgut epithelial cells. Biol Control 11, 58–69.[CrossRef]
    [Google Scholar]
  43. Washburn, J. O., Haas-Stapleton, E. J., Tan, F. F., Beckage, N. E. & Volkman, L. E. ( 2000; ). Co-infection of Manduca sexta larvae with polydnavirus from Cotesia congregata increases susceptibility to fatal infection by Autographa californica M nucleopolyhedrovirus. J Insect Physiol 46, 179–190.[CrossRef]
    [Google Scholar]
  44. Washburn, J. O., Chan, E. Y., Volkman, L. E., Aumiller, J. J. & Jarvis, D. L. ( 2003; ). Early synthesis of budded virus envelope fusion protein GP64 enhances Autographa californica multicapsid nucleopolyhedrovirus virulence in orally infected Heliothis virescens. J Virol 77, 280–290.[CrossRef]
    [Google Scholar]
  45. Yang, M. R., Lee, S. R., Oh, W. Y., Lee, E. W., Yeh, J. Y., Nah, J. J., Joo, Y. S., Shin, J. K., Lee, H. W. & other authors ( 2008; ). West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus. Cell Microbiol 10, 165–176.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.011718-0
Loading
/content/journal/jgv/10.1099/vir.0.011718-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error