A unicellular algal virus, virus 86, exploits an animal-like infection strategy Free

Abstract

virus 86 (EhV-86) belongs to the family , a group of viruses that infect a wide range of freshwater and marine eukaryotic algae. is one of the five families that belong to a large and phylogenetically diverse group of viruses known as nucleocytoplasmic large dsDNA viruses (NCLDVs). To date, our understanding of algal NCLDV entry is based on the entry mechanisms of members of the genera and , both of which consist of non-enveloped viruses that ‘inject’ their genome into their host via a viral inner-membrane host plasma membrane fusion mechanism, leaving an extracellular viral capsid. Using a combination of confocal and electron microscopy, this study demonstrated for the first time that EhV-86 differs from its algal virus counterparts in two fundamental areas. Firstly, its capsid is enveloped by a lipid membrane, and secondly, EhV-86 enters its host via either an endocytotic or an envelope fusion mechanism in which an intact nucleoprotein core still encapsulated by its capsid is seen in the host cytoplasm. Real-time fluorescence microscopy showed that viral internalization and virion breakdown took place within the host on a timescale of seconds. At around 4.5 h post-infection, virus progeny were released via a budding mechanism during which EhV-86 virions became enveloped with host plasma membrane. EhV-86 therefore appears to have an infection mechanism different from that employed by other algal NCLDVs, with entry and exit strategies showing a greater analogy to animal-like NCLDVs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.011635-0
2009-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/9/2306.html?itemId=/content/journal/jgv/10.1099/vir.0.011635-0&mimeType=html&fmt=ahah

References

  1. Allen, M. J., Forster, T., Schroeder, D. C., Hall, M., Roy, D., Ghazal, P. & Wilson, W. H.(2006a). Locus-specific gene expression pattern suggests a unique propagation strategy for a giant algal virus. J Virol 80, 7699–7705.[CrossRef] [Google Scholar]
  2. Allen, M. J., Schroeder, D. C., Holden, M. T. G. & Wilson, W. H.(2006b). Evolutionary history of the Coccolithoviridae. Mol Biol Evol 23, 86–92. [Google Scholar]
  3. Armstrong, J. A., Metz, D. H. & Young, M. R.(1973). Mode of entry of vaccinia virus into L cells. J Gen Virol 21, 533–537.[CrossRef] [Google Scholar]
  4. Billard, C. & Inouye, I.(2004). What is new in coccolithophore biology? In Coccolithophores: From Molecular Processes to Global Impact, pp. 1–31. Edited by H. R. Thierstein & J. R. Young. Berlin: Springer.
  5. Bratbak, G., Wilson, W. & Heldal, M.(1996). Viral control of Emiliania huxleyi blooms? J Mar Syst 9, 75–81.[CrossRef] [Google Scholar]
  6. Braunwald, J., Nonnenmacher, H. & Tripier-Darcy, F.(1985). Ultrastructural and biochemical study of frog virus 3 uptake by BHK-21 cells. J Gen Virol 66, 283–293.[CrossRef] [Google Scholar]
  7. Brown, E., Senkevich, T. G. & Moss, B.(2006). Vaccinia virus F9 virion membrane protein is required for entry but not virus assembly, in contrast to the related L1 protein. J Virol 80, 9455–9464.[CrossRef] [Google Scholar]
  8. Chang, A. & Metz, D. H.(1976). Further investigations on mode of entry of vaccinia virus into cells. J Gen Virol 32, 275–282.[CrossRef] [Google Scholar]
  9. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G.(1987). Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661.[CrossRef] [Google Scholar]
  10. Chinchar, V. G.(2002). Ranaviruses (family Iridoviridae): emerging cold-blooded killers: brief review. Arch Virol 147, 447–470.[CrossRef] [Google Scholar]
  11. Dixon, L. K., Abrams, C. C., Bowick, G., Goatley, L. C., Kay-Jackson, P. C., Chapman, D., Liverani, E., Nix, R., Silk, R. & Zhang, F.(2004). African swine fever virus proteins involved in evading host defence systems. Vet Immunol Immunopathol 100, 117–134.[CrossRef] [Google Scholar]
  12. Doms, R. W., Blumenthal, R. & Moss, B.(1990). Fusion of intra- and extracellular forms of vaccinia virus with the cell membrane. J Virol 64, 4884–4892. [Google Scholar]
  13. Earp, L., Delos, S., Park, H. & White, J.(2005). The many mechanisms of viral membrane fusion proteins. In Membrane Trafficking in Viral Replication, pp. 25–66. Edited by M. E. Marsh. Verlag: Springer.
  14. Fuhrman, J. A.(1999). Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548.[CrossRef] [Google Scholar]
  15. Guillard, R. R. L.(1975). Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals, pp. 26–60. Edited by W. L. Smith and M. H. Chanley. New York: Plenum.
  16. Horowitz, B., Bonomo, R., Prince, A. M., Chin, S. N., Brotman, B. & Shulman, R. W.(1992). Solvent/detergent-treated plasma: a virus-inactivated substitute for fresh frozen plasma. Blood 79, 826–831. [Google Scholar]
  17. Huiskonen, J. T. & Butcher, S. J.(2007). Membrane-containing viruses with icosahedrally symmetric capsids. Curr Opin Struct Biol 17, 229–236.[CrossRef] [Google Scholar]
  18. Iyer, L. M., Aravind, L. & Koonin, E. V.(2001). Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 75, 11720–11734.[CrossRef] [Google Scholar]
  19. Iyer, L. M., Balaji, S., Koonin, E. V. & Aravind, L.(2006). Evolutionary genomics of nucleo-cytoplasmic large DNA viruses. Virus Res 117, 156–184.[CrossRef] [Google Scholar]
  20. Jacquet, S., Heldal, M., Iglesias-Rodriguez, D., Larsen, A., Wilson, W. H. & Bratbak, G.(2002). Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat Microb Ecol 27, 111–124.[CrossRef] [Google Scholar]
  21. Law, M., Carter, G. C., Roberts, K. L., Hollinshead, M. & Smith, G. L.(2006). Ligand-induced and nonfusogenic dissolution of a viral membrane. Proc Natl Acad Sci U S A 103, 5989–5994.[CrossRef] [Google Scholar]
  22. Lefkowitz, E. J., Wang, C. & Upton, C.(2006). Poxviruses: past, present and future. Virus Res 117, 105–118.[CrossRef] [Google Scholar]
  23. Maier, I. & Müller, D. G.(1998). Virus binding to brown algal spores and gametes visualized by DAPI fluorescence microscopy. Phycologia 37, 60–63.[CrossRef] [Google Scholar]
  24. Maier, I., Müller, D. G. & Katsaros, C.(2002). Entry of the DNA virus, Ectocarpus fasciculatus virus type 1 (Phycodnaviridae), into host cell cytosol and nucleus. Phycological Res 50, 227–231.[CrossRef] [Google Scholar]
  25. Meints, R. H., Lee, K., Burbank, D. E. & Van Etten, J. L.(1984). Infection of a Chlorella-like alga with the virus, PBCV-1: ultrastructural studies. Virology 138, 341–346.[CrossRef] [Google Scholar]
  26. Meints, R. H., Lee, K. & Van Etten, J. L.(1986). Assembly site of the virus PBCV-1 in a Chlorella-like green alga: ultrastructural studies. Virology 154, 240–245.[CrossRef] [Google Scholar]
  27. Nishikawa, S. & Sasaki, F.(1996). Internalization of styryl dye FM1-43 in the hair cells of lateral line organs in Xenopus larvae. J Histochem Cytochem 44, 733–741.[CrossRef] [Google Scholar]
  28. Paasche, E.(2001). A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification–photosynthesis interactions. Phycologia 40, 503–529.[CrossRef] [Google Scholar]
  29. Raoult, D., Audic, S., Robert, C., Abergel, C., Renesto, P., Ogata, H., La Scola, B., Suzan, M. & Claverie, J. M.(2004). The 1.2-megabase genome sequence of mimivirus. Science 306, 1344–1350.[CrossRef] [Google Scholar]
  30. Rieley, G., Teece, M., Peakman, T., Raven, A., Greene, K., Clarke, T., Murray, M., Lettley, J., Campbell, C. & other authors(1998). Long-chain alkenes of the haptophytes Isochrysis galbana and Emiliania huxleyi. Lipids 33, 617–625.[CrossRef] [Google Scholar]
  31. Roberts, P. L.(2008). Virus inactivation by solvent/detergent treatment using Triton X-100 in a high purity factor VIII. Biologicals 36, 330–335.[CrossRef] [Google Scholar]
  32. Schroeder, D. C., Oke, J., Malin, G. & Wilson, W. H.(2002). Coccolithovirus (Phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi. Arch Virol 147, 1685–1698.[CrossRef] [Google Scholar]
  33. Strömsten, N. J., Bamford, D. H. & Bamford, J. K. H.(2005).In vitro DNA packaging of PRD1: a common mechanism for internal-membrane viruses. J Mol Biol 348, 617–629.[CrossRef] [Google Scholar]
  34. Suttle, C. A.(1993). Enumeration and isolation of viruses. In Handbook of Methods in Aquatic Microbial Ecology, pp. 121–134. Edited by P. F. Kenp, B. Sherr, E. Sherr & J. J. Cole. Boca Raton, FL: Lewis.
  35. Suttle, C. A.(2005). Viruses in the sea. Nature 437, 356–361.[CrossRef] [Google Scholar]
  36. Suzan-Monti, M., Scola, B. L., Barrassi, L., Espinosa, L. & Raoult, D.(2007). Ultrastructural characterization of the giant volcano-like virus factory of Acanthamoeba polyphaga mimivirus. PLoS One 2, e328[CrossRef] [Google Scholar]
  37. Taylor, A. R. & Brownlee, C.(2003). A novel Cl inward-rectifying current in the plasma membrane of the calcifying marine phytoplankton Coccolithus pelagicus. Plant Physiol 131, 1391–1400.[CrossRef] [Google Scholar]
  38. Thormar, H., Isaacs, C. E., Brown, H. R., Barshatzky, M. R. & Pessolano, T.(1987). Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother 31, 27–31.[CrossRef] [Google Scholar]
  39. Turner, P. C. & Moyer, R. W.(2008). The vaccinia virus fusion inhibitor proteins SPI-3 (K2) and HA (A56) expressed by infected cells reduce the entry of superinfecting virus. Virology 380, 226–233.[CrossRef] [Google Scholar]
  40. Valdeira, M. L. & Geraldes, A.(1985). Morphological study on the entry of African swine fever virus into cells. Biol Cell 55, 35–40.[CrossRef] [Google Scholar]
  41. Valdeira, M. L., Bernardes, C., Cruz, B. & Geraldes, A.(1998). Entry of African swine fever virus into Vero cells and uncoating. Vet Microbiol 60, 131–140.[CrossRef] [Google Scholar]
  42. Van Etten, J. L., Graves, M. V., Müller, D. G., Boland, W. & Delaroque, N.(2002).Phycodnaviridae – large DNA algal viruses. Arch Virol 147, 1479–1516.[CrossRef] [Google Scholar]
  43. Vollenbroich, D., Özel, M., Vater, J., Kamp, R. M. & Pauli, G.(1997). Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25, 289–297.[CrossRef] [Google Scholar]
  44. Westbroek, P., Brown, C. W., Vanbleijswijk, J., Brownlee, C., Brummer, G. J., Conte, M., Egge, J., Fernandez, E., Jordan, R. & other authors(1993). A model system approach to biological climate forcing. The example of Emiliania huxleyi. Global Planet Change 8, 27–46.[CrossRef] [Google Scholar]
  45. Wilson, W. H., Tarran, G. A., Schroeder, D., Cox, M., Oke, J. & Malin, G.(2002). Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J Mar Biol Assoc U K 82, 369–377.[CrossRef] [Google Scholar]
  46. Wilson, W. H., Schroeder, D. C., Allen, M. J., Holden, M. T. G., Parkhill, J., Barrell, B. G., Churcher, C., Harnlin, N., Mungall, K. & other authors(2005). Complete genome sequence and lytic phase transcription profile of a Coccolithovirus. Science 309, 1090–1092.[CrossRef] [Google Scholar]
  47. Wolf, S., Maier, I., Katsaros, C. & Müller, D. G.(1998). Virus assembly in Hincksia hincksiae (Ectocarpales, Phaeophyceae) an electron and fluorescence microscopic study. Protoplasma 203, 153–167.[CrossRef] [Google Scholar]
  48. Yan, X., Olson, N. H., Van Etten, J. L., Bergoin, M., Rossmann, M. G. & Baker, T. S.(2000). Structure and assembly of large lipid-containing dsDNA viruses. Nat Struct Biol 7, 101–103.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.011635-0
Loading
/content/journal/jgv/10.1099/vir.0.011635-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed