1887

Abstract

During the last 30 years, there has been a continued increase in human cases of tick-borne encephalitis (TBE) in Europe, a disease caused by tick-borne encephalitis virus (TBEV). TBEV is endemic in an area ranging from northern China and Japan, through far-eastern Russia to Europe, and is maintained in cycles involving Ixodid ticks ( and and wild vertebrate hosts. The virus causes a potentially fatal neurological infection, with thousands of cases reported annually throughout Europe. TBE has a significant mortality rate depending upon the strain of virus or may cause long-term neurological/neuropsychiatric sequelae in people affected. In this review, we comprehensively reviewed TBEV, its epidemiology and pathogenesis, the clinical manifestations of TBE, along with vaccination and prevention. We also discuss the factors which may have influenced an apparent increase in the number of reported human cases each year, despite the availability of effective vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.011437-0
2009-08-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/8/1781.html?itemId=/content/journal/jgv/10.1099/vir.0.011437-0&mimeType=html&fmt=ahah

References

  1. Albrecht, P. ( 1968; ). Pathogenesis of neurotropic arbovirus infections. Curr Top Microbiol Immunol 43, 44–91.
    [Google Scholar]
  2. Allison, S. L., Stadler, K., Mandl, C. W., Kunz, C. & Heinz, F. X. ( 1995a; ). Synthesis and secretion of recombinant Tick-borne encephalitis virus protein E in soluble and particulate form. J Virol 69, 5816–5820.
    [Google Scholar]
  3. Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W., Kunz, C. & Heinz, F. X. ( 1995b; ). Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol 69, 695–700.
    [Google Scholar]
  4. Andzhaparidze, O. G., Rozina, E. E., Bogomolova, N. N. & Boriskin, Y. S. ( 1978; ). Morphological characteristics of the infection of animals with tick-borne encephalitis virus persisting for a long time in cell cultures. Acta Virol 22, 218–224.
    [Google Scholar]
  5. Arras, C., Fescharek, R. & Gregersen, J. P. ( 1996; ). Do specific hyperimmunoglobulins aggravate clinical course of tick-borne encephalitis? Lancet 347, 1331
    [Google Scholar]
  6. Atrasheuskaya, A. V., Fredeking, T. M. & Ignatyev, G. M. ( 2003; ). Changes in immune parameters and their correction in human cases of tick-borne encephalitis. Clin Exp Immunol 131, 148–154.[CrossRef]
    [Google Scholar]
  7. Bakhvalova, V. N., Dobrotvorsky, A. K., Panov, V. V., Matveeva, V. A., Tkachev, S. E. & Morozova, O. V. ( 2006; ). Natural tick-borne encephalitis infection among wild small mammals in the southeastern part of western Siberia, Russia. Vector Borne Zoonotic Dis 6, 32–41.[CrossRef]
    [Google Scholar]
  8. Best, S. M., Morris, K. L., Shannon, J. G., Robertson, S. J., Mitzel, D. N., Park, G. S., Boer, E., Wolfinbarger, J. B. & Bloom, M. E. ( 2005; ). Inhibition of interferon-stimulated JAK–STAT signalling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol 79, 12828–12839.[CrossRef]
    [Google Scholar]
  9. Brinton, M. A. ( 2002; ). The molecular biology of West Nile virus: a new invader of the Western hemisphere. Annu Rev Microbiol 56, 371–402.[CrossRef]
    [Google Scholar]
  10. Calisher, C. H. ( 1988; ). Antigenic classification and taxonomy of flaviviruses (family Flaviviridae) emphasizing a universal system for the taxonomy of viruses causing tick-borne encephalitis. Acta Virol 32, 469–478.
    [Google Scholar]
  11. Calisher, C. H. & Gould, E. A. ( 2003; ). Taxonomy of the virus family Flaviviridae. Adv Virus Res 59, 1–19.
    [Google Scholar]
  12. Casati, S., Gern, L. & Piffaretti, J.-C. ( 2006; ). Diversity of the population of tick-borne encephalitis virus infecting Ixodes ricinus ticks in an endemic area of central Switzerland. J Gen Virol 87, 2235–2241.[CrossRef]
    [Google Scholar]
  13. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. ( 1990a; ). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649–688.[CrossRef]
    [Google Scholar]
  14. Chambers, T. J., Weir, R. C., Grakoui, A., McCourt, D. W., Bazan, J. F., Fletterick, R. J. & Rice, C. M. ( 1990b; ). Evidence that the N-terminal domain of non-structural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc Natl Acad Sci U S A 87, 8898–8902.[CrossRef]
    [Google Scholar]
  15. Charrel, R. N., Zaki, A. M., Attoui, H., Fakeeh, M., Billoir, F., Yousef, A. I., de Chesse, R., de Mico, P., Gould, E. A. & de Lamballerie, X. ( 2001; ). Complete coding sequence of the Alkhurma virus, a tick-borne flavivirus causing severe hemorrhagic fever in humans in Saudi Arabia. Biochem Biophys Res Commun 287, 455–461.[CrossRef]
    [Google Scholar]
  16. Charrel, R. N., Attoui, H., Butenko, A. M., Clegg, J. C., Deubel, V., Frolova, T. V., Gould, E. A., Gritsun, T. S., Heinz, F. X. & other authors ( 2004; ). Tick-borne virus diseases of human interest in Europe. Clin Microbiol Infect 10, 1040–1055.[CrossRef]
    [Google Scholar]
  17. Chu, J. J. H. & Ng, M. L. ( 2004; ). Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78, 10543–10555.[CrossRef]
    [Google Scholar]
  18. Chu, P. W. G. & Westaway, E. G. ( 1985; ). Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology 140, 68–79.[CrossRef]
    [Google Scholar]
  19. Clarke, D. H. ( 1964; ). Further studies on antigenic relationships among the viruses of the Group B Tick-borne complex. Bull World Health Organ 31, 45–56.
    [Google Scholar]
  20. Cook, S. & Holmes, E. C. ( 2006; ). A multigene analysis of the phylogenetic relationships among the flaviviruses (family: Flaviviridae) and the evolution of vector transmission. Arch Virol 151, 309–325.[CrossRef]
    [Google Scholar]
  21. Csángó, P. A., Blakstad, E., Kirtz, G. C., Pederson, J. E. & Czettel, B. ( 2004; ). Tick-borne encephalitis in Southern Norway. Emerg Infect Dis 10, 533–534.[CrossRef]
    [Google Scholar]
  22. Danielová, V., Holubová, J., Pejčoch, M. & Daniel, M. ( 2002; ). Potential significance of transovarial transmission in the circulation of tick-borne encephalitis virus. Folia Parasitol (Praha) 49, 323–325.[CrossRef]
    [Google Scholar]
  23. Davidson, M. M., Williams, H. & Macleod, J. A. J. ( 1991; ). Louping ill in man: a forgotten disease. J Infect 23, 241–249.[CrossRef]
    [Google Scholar]
  24. Dumpis, U., Crook, D. & Oksi, J. ( 1999; ). Tick-borne encephalitis. Clin Infect Dis 28, 882–890.[CrossRef]
    [Google Scholar]
  25. Ecker, M., Allison, S. L., Meixner, T. & Heinz, F. X. ( 1999; ). Sequence analysis and genetic classification of tick-borne encephalitis viruses from Europe and Asia. J Gen Virol 80, 179–185.
    [Google Scholar]
  26. Egloff, M.-P., Benarroch, D., Selisko, B., Romette, J.-L. & Canard, B. ( 2002; ). An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21, 2757–2768.[CrossRef]
    [Google Scholar]
  27. Elshuber, S., Allison, S. L., Heinz, F. X. & Mandl, C. W. ( 2003; ). Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus. J Gen Virol 84, 183–191.[CrossRef]
    [Google Scholar]
  28. Ergunay, K., Ozer, N., Us, D., Ozkul, A., Simsek, F., Kaynas, S. & Ustacelebi, S. ( 2007; ). Seroprevalence of West Nile virus and tick-borne encephalitis virus in southeastern Turkey: first evidence for tick-borne encephalitis infections. Vector Borne Zoonotic Dis 7, 157–161.[CrossRef]
    [Google Scholar]
  29. Ferlenghi, I., Clarke, M., Ruttan, T., Allison, S. L., Schalich, J., Heinz, F. X., Harrison, S. C., Rey, F. A. & Fuller, S. D. ( 2001; ). Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell 7, 593–602.[CrossRef]
    [Google Scholar]
  30. Fritz, R., Stiasny, K. & Heinz, F. X. ( 2008; ). Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol 183, 353–361.[CrossRef]
    [Google Scholar]
  31. Furuichi, Y. & Shatkin, A. J. ( 2000; ). Viral and cellular mRNA capping: past and prospects. Adv Virus Res 55, 135–184.
    [Google Scholar]
  32. Glimåker, M., Olcén, P. & Andersson, B. ( 1994; ). Interferon-γ in cerebrospinal fluid from patients with viral and bacterial meningitis. Scand J Infect Dis 26, 141–147.[CrossRef]
    [Google Scholar]
  33. Golovljova, I., Vene, S., Sjölander, K. B. & Vasilenko, V. ( 2004; ). Characterization of tick-borne encephalitis virus from Estonia. J Med Virol 74, 580–588.[CrossRef]
    [Google Scholar]
  34. Gould, E. A. & Solomon, T. ( 2008; ). Pathogenic flaviviruses. Lancet 371, 500–509.[CrossRef]
    [Google Scholar]
  35. Gould, E. A., Moss, S. R. & Turner, S. L. ( 2004; ). Evolution and dispersal of encephalitic flaviviruses. Arch Virol Suppl 18, 65–84.
    [Google Scholar]
  36. Gould, E. A., Higgs, S., Buckley, A. & Gritsun, T. S. ( 2006; ). Potential arbovirus emergence and implications for the United Kingdom. Emerg Infect Dis 12, 549–555.[CrossRef]
    [Google Scholar]
  37. Grard, G., Moureau, G., Charrel, R. N., Lemasson, J.-J., Gonzalez, J.-P., Gallian, P., Gritsun, T. S., Holmes, E. C., Gould, E. A. & de Lamballerie, X. ( 2007; ). Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenic determinants and taxonomy. Virology 361, 80–92.[CrossRef]
    [Google Scholar]
  38. Gray, J. S. ( 1991; ). The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev Med Vet Entomol 79, 323–333.
    [Google Scholar]
  39. Gritsun, T. S., Lashkevich, V. A. & Gould, E. A. ( 2003a; ). Tick-borne encephalitis. Antiviral Res 57, 129–146.[CrossRef]
    [Google Scholar]
  40. Gritsun, T. S., Nuttall, P. A. & Gould, E. A. ( 2003b; ). Tick-borne flaviviruses. Adv Virus Res 61, 317–371.
    [Google Scholar]
  41. Grygorczuk, S., Zajkowska, J., Swierzbińska, R., Pancewicz, S., Kondrusik, M. & Hermanowska-Szpakowicz, T. ( 2006a; ). Concentration of the beta-chemokine CCL5 (RANTES) in cerebrospinal fluid in patients with tick-borne encephalitis. Neurol Neurochir Pol 40, 106–111.
    [Google Scholar]
  42. Grygorczuk, S., Zajkowska, J., Swierzbińska, R., Pancewicz, S., Kondrusik, M. & Hermanowska-Szpakowicz, T. ( 2006b; ). Elevated concentration of the chemokine CCL3 (MIP-1α) in cerebrospinal fluid and serum of patients with tick-borne encephalitis. Adv Med Sci 51, 340–344.
    [Google Scholar]
  43. Günther, G., Haglund, M., Lindquist, L., Sköldenberg, B. & Forsgren, M. ( 1997; ). Intrathecal IgM, IgA and IgG antibody response in tick-borne encephalitis. Clin Diagn Virol 8, 17–29.[CrossRef]
    [Google Scholar]
  44. Haglund, M. & Günther, G. ( 2003; ). Tick-borne encephalitis – pathogenesis, clinical course and long-term follow-up. Vaccine 21, S11–S18.[CrossRef]
    [Google Scholar]
  45. Han, X., Juceviciene, A., Uzcategui, N. Y., Brummer-Korvenkontio, H., Zygutiene, M., Jääskeläinen, A., Leinikki, P. & Vapalahti, O. ( 2005; ). Molecular epidemiology of tick-borne encephalitis virus in Ixodes ricinus ticks in Lithuania. J Med Virol 77, 249–256.[CrossRef]
    [Google Scholar]
  46. Heinz, F. X., Holzmann, H., Essl, A. & Kundi, M. ( 2007; ). Field effectiveness of vaccination against tick-borne encephalitis. Vaccine 25, 7559–7567.[CrossRef]
    [Google Scholar]
  47. Holub, M., Klučková, Z., Beran, O., Aster, V. & Lobovská, A. ( 2002; ). Lymphocyte subset numbers in cerebrospinal fluid: comparison of tick-borne encephalitis and neuroborreliosis. Acta Neurol Scand 106, 302–308.[CrossRef]
    [Google Scholar]
  48. Holzmann, H. ( 2003; ). Diagnosis of tick-borne encephalitis. Vaccine 21, S36–S40.[CrossRef]
    [Google Scholar]
  49. Holzmann, H., Vorobyova, M. S., Ladyzhenskaya, I. P., Ferenczi, E., Kundi, M., Kunz, C. & Heinz, F. X. ( 1992; ). Molecular epidemiology of tick-borne encephalitis virus: cross-protection between European and Far Eastern subtypes. Vaccine 10, 345–349.[CrossRef]
    [Google Scholar]
  50. Hou, Z., Heinz, F.X., Ecker, M., Zi, D., Liu, R. & Yu, Y. ( 1997; ). The nucleotide and deduced amino acid sequence of protein E of HLJ-1 strain of tick-borne encephalitis virus from northeastern China. Chin J Virol 13, 47–53.
    [Google Scholar]
  51. Jääskeläinen, A. E., Tikkakoski, T., Uzcátegui, N. Y., Alekseev, A. N., Vaheri, A. & Vapalahti, O. ( 2006; ). Siberian subtype tickborne encephalitis virus, Finland. Emerg Infect Dis 12, 1568–1571.[CrossRef]
    [Google Scholar]
  52. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L. & Daszak, P. ( 2008; ). Global trends in emerging infectious diseases. Nature 451, 990–994.[CrossRef]
    [Google Scholar]
  53. Juceviciene, A., Vapalahti, O., Laiskonis, A., Čeplikienė, J. & Leinikki, P. ( 2002; ). Prevalence of tick-borne-encephalitis virus antibodies in Lithuania. J Clin Virol 25, 23–27.
    [Google Scholar]
  54. Juceviciene, A., Zygutiene, M., Leinikki, P., Brummer-Korvenkontio, H., Salminen, M., Han, X. & Vapalahti, O. ( 2005; ). Tick-borne encephalitis virus infections in Lithuanian domestic animals and ticks. Scand J Infect Dis 37, 742–746.[CrossRef]
    [Google Scholar]
  55. Kaiser, R. ( 1999; ). The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994–1998. Brain 122, 2067–2078.[CrossRef]
    [Google Scholar]
  56. Kaluzová, M., Elecková, E., Zuffová, E., Pastorek, J., Kaluz, S., Kozuch, O. & Labuda, M. ( 1994; ). Reverted virulence of attenuated tick-borne encephalitis virus mutant is not accompanied with the changes in deduced viral envelope protein amino acid sequence. Acta Virol 38, 133–140.
    [Google Scholar]
  57. Kim, S.-Y., Yun, S.-M., Han, M. G., Lee, I. Y., Lee, N. Y., Jeong, Y. E., Lee, B. C. & Ju, Y. R. ( 2008; ). Isolation of tick-borne encephalitis viruses from wild rodents, South Korea. Vector Borne Zoonotic Dis 8, 7–13.[CrossRef]
    [Google Scholar]
  58. Kleiter, I., Jilg, W., Bogdahn, U. & Steinbrecher, A. ( 2007; ). Delayed humoral immunity in a patient with severe tick-borne encephalitis after complete active vaccination. Infection 35, 26–29.[CrossRef]
    [Google Scholar]
  59. Korenberg, E. I. ( 1994; ). Comparative ecology and epidemiology of Lyme disease and tick-borne encephalitis in the former Soviet Union. Parasitol Today 10, 157–160.[CrossRef]
    [Google Scholar]
  60. Kozuch, O., Labuda, M., Lysý, J., Weismann, P. & Krippel, E. ( 1990; ). Longitudinal study of natural foci of Central European encephalitis virus in West Slovakia. Acta Virol 34, 537–544.
    [Google Scholar]
  61. Kroschewski, H., Allison, S. L., Heinz, F. X. & Mandl, C. W. ( 2003; ). Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 308, 92–100.[CrossRef]
    [Google Scholar]
  62. Labuda, M., Jones, L. D., Williams, T., Danielova, V. & Nuttall, P. A. ( 1993; ). Efficient transmission of tick-borne encephalitis virus between cofeeding ticks. J Med Entomol 30, 295–299.[CrossRef]
    [Google Scholar]
  63. Labuda, M., Austyn, J. M., Zuffova, E., Kozuch, O., Fuchsberger, N., Lysy, J. & Nuttall, P. A. ( 1996; ). Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology 219, 357–366.[CrossRef]
    [Google Scholar]
  64. Labuda, M., Kozuch, O., Zuffová, E., Elecková, E., Hails, R. S. & Nuttall, P. A. ( 1997; ). Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology 235, 138–143.[CrossRef]
    [Google Scholar]
  65. Leonova, G. N., Ternovoi, V. A., Pavlenko, E. V., Maistrovskaya, O. S., Protopopova, E. V. & Loktev, V. B. ( 2007; ). Evaluation of vaccine Encepur® Adult for induction of human neutralizing antibodies against recent Far Eastern subtype strains of tick-borne encephalitis virus. Vaccine 25, 895–901.[CrossRef]
    [Google Scholar]
  66. Lepej, S. Z., Misić-Majerus, L., Jeren, T., Rode, O. D., Remenar, A., Sporec, V. & Vince, A. ( 2007; ). Chemokines CXCL10 and CXCL11 in the cerebrospinal fluid of patients with tick-borne encephalitis. Acta Neurol Scand 115, 109–114.[CrossRef]
    [Google Scholar]
  67. Lindenbach, B. D. & Rice, C. M. ( 2001; ). Flaviviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 991–1041. Edited by B. N. Fields, D. M. Knipe, P. M. Howley & D. E. Griffin. Philadelphia, PA: Lippincott Williams & Wilkins.
  68. Lindquist, L. & Vapalahti, O. ( 2008; ). Seminar: tick-borne encephalitis. Lancet 371, 1861–1871.[CrossRef]
    [Google Scholar]
  69. Lorenz, I. C., Allison, S. L., Heinz, F. X. & Helenius, A. ( 2002; ). Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 76, 5480–5491.[CrossRef]
    [Google Scholar]
  70. Lorenz, I. C., Kartenbeck, J., Mezzacasa, A., Allison, S. L., Heinz, F. X. & Helenius, A. ( 2003; ). Intracellular assembly and secretion of recombinat subviral particles from tick-borne encephalitis virus. J Virol 77, 4370–4382.[CrossRef]
    [Google Scholar]
  71. Lorenzl, S., Pfister, H. W., Padovan, C. & Yousry, T. ( 1996; ). MRI abnormalities in tick-borne encephalitis. Lancet 347, 698–699.[CrossRef]
    [Google Scholar]
  72. Lu, Z., Bröker, M. & Liang, G. ( 2008; ). Tick-borne encephalitis in mainland China. Vector Borne Zoonotic Dis 8, 713–720.[CrossRef]
    [Google Scholar]
  73. MacLeod, J. ( 1935; ). Ixodes ricinus in relation to its physical environment. II. The factors governing survival and activity. Parasitology 27, 123–144.[CrossRef]
    [Google Scholar]
  74. Málková, D. & Fraňková, V. ( 1959; ). The lymphatic system in the development of experimental tick-borne encephalitis in mice. Acta Virol 3, 210–214.
    [Google Scholar]
  75. Mandl, C. W. ( 2005; ). Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. Virus Res 111, 161–174.[CrossRef]
    [Google Scholar]
  76. Mandl, C. W., Ecker, M., Holzmann, H., Kunz, C. & Heinz, F. X. ( 1997; ). Infectious cDNA clones of tick-borne encephalitis virus European subtype prototypic strain Neudorfl and high virulence strain Hypr. J Gen Virol 78, 1049–1057.
    [Google Scholar]
  77. Marjelund, S., Tikkakoski, T., Tuisku, S. & Räisänen, S. ( 2004; ). Magnetic resonance imaging findings and outcome in severe tick-borne encephalitis. Report of four cases and review of the literature. Acta Radiol 45, 88–94.[CrossRef]
    [Google Scholar]
  78. McGuire, K., Holmes, E. C., Gao, G. F., Reid, H. W. & Gould, E. A. ( 1998; ). Tracing the origins of louping ill virus by molecular phylogenetic analysis. J Gen Virol 79, 981–988.
    [Google Scholar]
  79. Michałowska-Wender, G., Losy, J., Kondrusik, M., Zajkowska, J., Pancewicz, S., Grygorczuk, S. & Wender, M. ( 2006; ). Evaluation of soluble platelet cell adhesion molecule sPECAM-1 and chemokine MCP-1 (CCL2) concentration in CSF of patients with tick-borne encephalitis. Pol Merkur Lekarski 20, 46–48.
    [Google Scholar]
  80. Milne, A. ( 1949; ). The ecology of the sheep tick, Ixodes ricinus L. Host relationships of the tick. Part 2. Observation on hill and moorland grazings in northern England. Parasitology 39, 173–197.[CrossRef]
    [Google Scholar]
  81. Monath, T. P. & Heinz, F. X. ( 1996; ). Flaviviruses. In Fields Virology, 3rd edn. pp. 961–1034. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott-Raven.
  82. Nowak, T., Färber, P. M., Wengler, G. & Wengler, G. ( 1989; ). Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology 169, 365–376.[CrossRef]
    [Google Scholar]
  83. Nuttall, P. A., Jones, L. D., Labuda, M. & Kaufman, W. R. ( 1994; ). Adaptations of arboviruses to ticks. J Med Entomol 31, 1–9.[CrossRef]
    [Google Scholar]
  84. Orlinger, K. K., Hoenninger, V. M., Kofler, R. M. & Mandl, C. W. ( 2006; ). Construction and mutagenesis of an artificial bicistronic tick-borne encephalitis virus genome reveals an essential function of the second transmembrane region of protein E in flavivirus assembly. J Virol 80, 12197–12208.[CrossRef]
    [Google Scholar]
  85. Perkins, S. E., Cattadori, I. M., Tagliapietra, V., Rizzoli, A. P. & Hudson, P. J. ( 2006; ). Localized deer absence leads to tick amplification. Ecology 87, 1981–1986.[CrossRef]
    [Google Scholar]
  86. Phillpotts, R. J., Stephenson, J. R. & Porterfield, J. S. ( 1985; ). Antibody-dependent enhancement of tick-borne encephalitis virus infectivity. J Gen Virol 66, 1831–1837.[CrossRef]
    [Google Scholar]
  87. Pogodina, V. V. ( 1958; ). Resistance of tick-borne encephalitis virus to gastric juice. Vopr Virusol 3, 271–275 (in Russian).
    [Google Scholar]
  88. Pogodina, V. V. ( 2005; ). Monitoring of tick-borne encephalitis virus populations and etiological structure of morbidity over 60 years. Vopr Virusol 50, 7–13 (in Russian).
    [Google Scholar]
  89. Randolph, S. E. & Rogers, D. J. ( 2000; ). Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc Biol Sci 267, 1741–1744.[CrossRef]
    [Google Scholar]
  90. Randolph, S. E., Miklisová, D., Lysy, J., Rogers, D. J. & Labuda, M. ( 1999; ). Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 118, 177–186.[CrossRef]
    [Google Scholar]
  91. Randolph, S. E., Green, R. M., Peacey, M. F. & Rogers, D. J. ( 2000; ). Seasonal synchrony: the key to tick-borne encephalitis foci identified by satellite data. Parasitology 121, 15–23.[CrossRef]
    [Google Scholar]
  92. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. ( 1995; ). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298.[CrossRef]
    [Google Scholar]
  93. Romanova, L. I., Gmyl, A. P., Dzhivanian, T. I., Bakhmutov, D. V., Lukashev, A. N., Gmyl, L. V., Rumyantsev, A. A., Burenkova, L. A., Lashkevich, V. A. & Karganova, G. G. ( 2007; ). Microevolution of tick-borne encephalitis virus in course of host alternation. Virology 362, 75–84.[CrossRef]
    [Google Scholar]
  94. Růžek, D., Št'astná, H., Kopecký, J., Golovljova, I. & Grubhoffer, L. ( 2007; ). Rapid subtyping of tick-borne encephalitis virus isolates using multiplex RT-PCR. J Virol Methods 144, 133–137.[CrossRef]
    [Google Scholar]
  95. Růžek, D., Gritsun, T. S., Forrester, N. L., Gould, E. A., Kopecký, J., Golovchenko, M., Rudenko, N. & Grubhoffer, L. ( 2008; ). Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology 374, 249–255.[CrossRef]
    [Google Scholar]
  96. Růžek, D., Salát, J., Palus, M., Gritsun, T. S., Gould, E. A., Dyková, I., Skallová, A., Jelínek, J., Kopecký, J. & Grubhoffer, L. ( 2009; ). CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology 384, 1–6.[CrossRef]
    [Google Scholar]
  97. Saksida, A., Duh, D., Lotrič-Furlan, S., Strle, F., Petrovec, M. & Avšič-Županc, T. ( 2005; ). The importance of tick-borne encephalitis virus RNA detection for early differential diagnosis of tick-borne encephalitis. J Clin Virol 33, 331–335.[CrossRef]
    [Google Scholar]
  98. Schwaiger, M. & Cassinotti, P. ( 2003; ). Development of a quantitiative real-time RT-PCR assay with internal control for the laboratory detection of tick-borne encephalitis virus (TBEV) RNA. J Clin Virol 27, 136–145.[CrossRef]
    [Google Scholar]
  99. Skarphédinsson, S., Jensen, P. M. & Kristiansen, K. ( 2005; ). Survey of tickborne infections in Denmark. Emerg Infect Dis 11, 1055–1061.[CrossRef]
    [Google Scholar]
  100. Smith, C. E. ( 1956; ). A virus resembling Russian spring–summer encephalitis virus from an Ixodid tick in Malaya. Nature 178, 581–582.[CrossRef]
    [Google Scholar]
  101. Stadler, K., Allison, S. L., Schalich, J. & Heinz, F. X. ( 1997; ). Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71, 8475–8481.
    [Google Scholar]
  102. Stjernberg, L., Holmkvist, K. & Berglund, J. ( 2008; ). A newly detected tick-borne encephalitis (TBE) focus in south-east Sweden: a follow-up study of TBE virus (TBEV) seroprevalence. Scand J Infect Dis 40, 4–10.[CrossRef]
    [Google Scholar]
  103. Šumilo, D., Asokliene, L., Bormane, A., Vasilenko, V., Golovljova, I. & Randolph, S. E. ( 2007; ). Climate change cannot explain the upsurge of tick-borne encephalitis in the Baltics. PLoS One 2, e500 [CrossRef]
    [Google Scholar]
  104. Šumilo, D., Asokliene, L., Avsic-Zupanc, T., Bormane, A., Vasilenko, V., Lucenko, I., Golovljova, I. & Randolph, S. E. ( 2008a; ). Behavioural responses to perceived risk of tick-borne encephalitis: vaccination and avoidance in the Baltics and Slovenia. Vaccine 26, 2580–2588.[CrossRef]
    [Google Scholar]
  105. Šumilo, D., Bormane, A., Asokliene, L., Vasilenko, V., Golovljova, I., Avsic-Zupanc, T., Hubalek, Z. & Randolph, S. E. ( 2008b; ). Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Rev Med Virol 18, 81–95.[CrossRef]
    [Google Scholar]
  106. Süss, J. ( 2003; ). Epidemiology and ecology of TBE relevant to the production of effective vaccines. Vaccine 21, S19–S35.[CrossRef]
    [Google Scholar]
  107. Süss, J. ( 2008; ). Tick-borne encephalitis in Europe and beyond – the epidemiological situation as of 2007. Euro Surveill 13, 18916
    [Google Scholar]
  108. Süss, J., Klaus, C., Diller, R., Schrader, C., Wohanka, N. & Abel, U. ( 2006; ). TBE incidence versus virus prevalence of the TBE virus in Ixodes ricinus removed from humans. Int J Med Microbiol 296 (Suppl. 1), 63–68.
    [Google Scholar]
  109. Süss, J., Gelpi, E., Klaus, C., Bagon, A., Liebler-Tenorio, E. M., Budka, H., Stark, B., Müller, W. & Hotzel, H. ( 2007; ). Tickborne encephalitis in a naturally exposed monkey (Macaca sylvanus). Emerg Infect Dis 13, 905–907.[CrossRef]
    [Google Scholar]
  110. Süss, J., Dobler, G., Zöller, G., Essbauer, S., Pfeffer, M., Klaus, C., Liebler-Tenorio, E.M., Gelpi, E., Stark, B. & Hotzel, H. ( 2008; ). Genetic characterization of a tick-borne encephalitis virus isolated from the brain of a naturally exposed monkey (Macaca sylvanus). Int J Med Microbiol 298 (Suppl. 1), 295–300.[CrossRef]
    [Google Scholar]
  111. Takashima, I., Morita, K., Chiba, M., Hayasaka, D., Sato, T., Tekezawa, C., Igarashi, A., Kariwa, H., Yoshimatsu, K. & other authors ( 1997; ). A case of tick-borne encephalitis in Japan and isolation of the virus. J Clin Microbiol 35, 1943–1947.
    [Google Scholar]
  112. Toporkova, M. G., Aleshin, S. E., Ozherelkov, S. V., Nadezhdina, M. V., Stephenson, J. R. & Timofeev, A. V. ( 2008; ). Serum levels of interleukin 6 in recently hospitalized tick-borne encephalitis patients correlate with age, but not with disease outcome. Clin Exp Immunol 152, 517–521.[CrossRef]
    [Google Scholar]
  113. Vázquez, M., Muehlenbein, C., Cartter, M., Hayes, E. B., Ertel, S. & Shapiro, E. D. ( 2008; ). Effectiveness of personal protective measures to prevent Lyme disease. Emerg Infect Dis 14, 210–216.[CrossRef]
    [Google Scholar]
  114. Waldenström, J., Lundkvist, A., Falk, K. I., Garpmo, U., Bergström, S., Lindegren, G., Sjöstedt, A., Mejlon, H., Fransson, T. & other authors ( 2007; ). Migrating birds and tickborne encephalitis virus. Emerg Infect Dis 13, 1215–1218.[CrossRef]
    [Google Scholar]
  115. Wengler, G. & Wengler, G. ( 1989; ). Cell-associated West Nile flavivirus is covered with E+Pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol 63, 2521–2526.
    [Google Scholar]
  116. Wengler, G. & Wengler, G. ( 1991; ). The carboxy-terminal part of the NS3 protein of the West Nile virus flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase. Virology 184, 707–715.[CrossRef]
    [Google Scholar]
  117. Wengler, G., Wengler, G. & Gross, H. J. ( 1978; ). Studies on virus-specific nucleic acids synthesized in vertebrate and mosquito cells infected with flaviviruses. Virology 89, 423–437.[CrossRef]
    [Google Scholar]
  118. Werme, K., Wigerius, M. & Johansson, M. ( 2008; ). Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK–STAT signalling. Cell Microbiol 10, 696–712.[CrossRef]
    [Google Scholar]
  119. Zlontnik, I., Grant, D. P. & Carter, G. B. ( 1976; ). Experimental infection of monkeys with viruses of the tick-borne encephalitis complex: degenerative cerebellar lesions following inapparent forms of the disease or recovery from clinical encephalitis. Br J Exp Pathol 57, 200–210.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.011437-0
Loading
/content/journal/jgv/10.1099/vir.0.011437-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error