SMAD proteins of oligodendroglial cells regulate transcription of JC virus early and late genes coordinately with the Tat protein of human immunodeficiency virus type 1 Free

Abstract

JC virus (JCV) is the aetiological agent of progressive multifocal leukoencephalopathy (PML), a fatal, demyelinating disease of the brain affecting people with AIDS. Although immunosuppression is involved in infection of the brain by JCV, a direct influence of human immunodeficiency virus type 1 (HIV-1) has also been established. The Tat protein of HIV-1 has been implicated in activation of the cytokine transforming growth factor (TGF)- in HIV-1-infected cells and in stimulating JCV gene transcription and DNA replication in oligodendroglia, the primary central nervous system cell type infected by JCV in PML. This study demonstrated that Tat can cooperate with SMAD proteins, the intracellular effectors of TGF-, at the JCV DNA control region (CR) to stimulate JCV gene transcription. Tat stimulated JCV early gene transcription in KG-1 oligodendroglial cells when expressed via transfection or added exogenously. Using chromatin immunoprecipitation, it was shown that exogenous Tat enhanced binding of SMAD2, -3 and -4 and their binding partner Fast1 to the JCV CR in living cells. When SMAD2, -3 and -4 were expressed together, Tat, expressed from plasmid pTat, stimulated transcription from both early and late gene promoters, with the early promoter exhibiting stimulation of >100-fold. Tat, SMAD4 and JCV large T-antigen were all visualized in oligodendroglial cells at the border of an active PML lesion in the cerebral frontal lobe. These results revealed a positive reinforcement system in which the SMAD mediators of the TGF- system act cooperatively with Tat to stimulate JCV gene transcription.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.011072-0
2009-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/8/2005.html?itemId=/content/journal/jgv/10.1099/vir.0.011072-0&mimeType=html&fmt=ahah

References

  1. Banks W. A., Robinson S. M., Nath A. 2005; Permeability of the blood-brain barrier to HIV-1 Tat. Exp Neurol 193:218–227 [CrossRef]
    [Google Scholar]
  2. Barr S. M., Johnson E. M. 2001; Ras -induced colony formation and anchorage-independent growth inhibited by elevated expression of Pur α in NIH3T3 cells. J Cell Biochem 81:621–638 [CrossRef]
    [Google Scholar]
  3. Bergemann A. D., Ma Z.-W., Johnson E. M. 1992; Sequence of cDNA comprising the human pur gene and sequence-specific single-stranded-DNA-binding properties of the encoded protein. Mol Cell Biol 12:5673–5682
    [Google Scholar]
  4. Bottner M., Krieglstein K., Unsicker K. 2000; The transforming growth factor- β s: structure, signaling, and roles in nervous system development and functions. J Neurochem 75:2227–2240
    [Google Scholar]
  5. Chepenik L. G., Tretiakova A. P., Krachmarov C. P., Johnson E. M., Khalili K. 1998; The single-stranded DNA binding protein, Pur- α , binds HIV-1 TAR RNA and activates HIV-1 transcription. Gene 210:37–44 [CrossRef]
    [Google Scholar]
  6. Chowdhury M., Taylor J. P., Tada H., Rappaport J., Wong-Staal F., Amini S., Khalili K. 1990; Regulation of the human neurotropic virus promoter by JCV-T antigen and HIV-1 Tat protein. Oncogene 5:1737–1742
    [Google Scholar]
  7. Chowdhury M., Taylor J. P., Chang C. F., Rappaport J., Khalili K. 1992; Evidence that a sequence similar to TAR is important for induction of the JC virus late promoter by human immunodeficiency virus type 1 Tat. J Virol 66:7355–7361
    [Google Scholar]
  8. Cinque P., Koralnik I. J., Clifford D. B. 2003; The evolving face of human immunodeficiency virus-related progressive multifocal leukoencephalopathy: defining a consensus terminology. J Neurovirol 9:Suppl. 188–92 [CrossRef]
    [Google Scholar]
  9. Conant K., Ma M., Nath A., Major E. O. 1996; Extracellular human immunodeficiency virus type 1 Tat protein is associated with an increase in both NF- κ B binding and protein kinase C activity in primary human astrocytes. J Virol 70:1384–1389
    [Google Scholar]
  10. Cupp C., Taylor J. P., Khalili K., Amini S. 1993; Evidence for stimulation of the transforming growth factor β 1 promoter by HIV-1 Tat in cells derived from CNS. Oncogene 8:2231–2236
    [Google Scholar]
  11. Daniel D. C., Wortman M. J., Schiller R. J., Liu H., Gan L., Mellen J. S., Chang C. F., Gallia G. L., Rappaport J. other authors 2001; Coordinate effects of human immunodeficiency virus type 1 protein Tat and cellular protein Pur α on DNA replication initiated at the JC virus origin. J Gen Virol 82:1543–1553
    [Google Scholar]
  12. Daniel D. C., Kinoshita Y., Khan M. A., Del Valle L., Khalili K., Rappaport J., Johnson E. M. 2004; Internalization of exogenous human immunodeficiency virus-1 protein, Tat, by KG-1 oligodendroglioma cells followed by stimulation of DNA replication initiated at the JC virus origin. DNA Cell Biol 23:858–867 [CrossRef]
    [Google Scholar]
  13. Darbinian N., Gallia G. L., Khalili K. 2001a; Helix-destabilizing properties of the human single-stranded DNA- and RNA-binding protein Pur α . J Cell Biochem 80:589–595 [CrossRef]
    [Google Scholar]
  14. Derynck R., Zhang Y., Feng X. H. 1998; Smads: transcriptional activators of TGF- β responses. Cell 95:737–740 [CrossRef]
    [Google Scholar]
  15. Dingwall C., Ernberg I., Gait M. J., Green S. M., Heaphy S., Karn J., Lowe A. D., Singh M., Skinner M. A. 1990; HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. EMBO J 9:4145–4153
    [Google Scholar]
  16. Enam S., Sweet T. M., Amini S., Khalili K., Del Valle L. 2004; Evidence for involvement of transforming growth factor β 1 signaling pathway in activation of JC virus in human immunodeficiency virus 1-associated progressive multifocal leukoencephalopathy. Arch Pathol Lab Med 128:282–291
    [Google Scholar]
  17. Ensoli B., Barillari G., Salahuddin S. Z., Gallo R. C., Wong-Staal F. 1990; Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 345:84–86 [CrossRef]
    [Google Scholar]
  18. Ensoli B., Buonaguro L., Barillari G., Fiorelli V., Gendelman R., Morgan R. A., Wingfield P., Gallo R. C. 1993; Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein in cell growth and viral transactivation. J Virol 67:277–287
    [Google Scholar]
  19. Ezhevsky S. A., Nagahara H., Vocero-Akbani A. M., Gius D. R., Wei M. C., Dowdy S. F. 1997; Hypo-phosphorylation of the retinoblastoma protein (pRb) by cyclin D: Cdk4/6 complexes results in active pRb. Proc Natl Acad Sci U S A 94:10699–10704 [CrossRef]
    [Google Scholar]
  20. Feng X. H., Derynck R. 2005; Specificity and versatility in TGF- β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693 [CrossRef]
    [Google Scholar]
  21. Frankel A. D., Pabo C. O. 1988; Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55:1189–1193 [CrossRef]
    [Google Scholar]
  22. Fujinaga K., Taube R., Wimmer J., Cujec T. P., Peterlin B. M. 1999; Interactions between human cyclin T, Tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T. Proc Natl Acad Sci U S A 96:1285–1290 [CrossRef]
    [Google Scholar]
  23. Gallia G. L., Safak M., Khalili K. 1998; Interaction of the single-stranded DNA-binding protein Pur α with the human polyomavirus JC virus early protein T-antigen. J Biol Chem 273:32662–32669 [CrossRef]
    [Google Scholar]
  24. Gallia G. L., Darbinian N., Tretiakova A., Ansari S. A., Rappaport J., Brady J., Wortman M. J., Johnson E. M., Khalili K. 1999; Association of HIV-1 Tat with the cellular protein, Pur α , is mediated by RNA. Proc Natl Acad Sci U S A 96:11572–11577 [CrossRef]
    [Google Scholar]
  25. Gallia G. L., Johnson E. M., Khalili K. 2000; Pur α : a multifunctional single-stranded DNA- and RNA-binding protein. Nucleic Acids Res 28:3197–3205 [CrossRef]
    [Google Scholar]
  26. Garber M. E., Wei P., Jones K. A. 1998a; HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA. Cold Spring Harb Symp Quant Biol 63:371–380 [CrossRef]
    [Google Scholar]
  27. Garber M. E., Wei P., KewalRamani V. N., Mayall T. P., Herrmann C. H., Rice A. P., Littman D. R., Jones K. A. 1998b; The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 12:3512–3527 [CrossRef]
    [Google Scholar]
  28. Gold M. O., Yang X., Herrmann C. H., Rice A. P. 1998; PITALRE, the catalytic subunit of TAK, is required for human immunodeficiency virus Tat transactivation in vivo. J Virol 72:4448–4453
    [Google Scholar]
  29. Haas S., Thatikunta P., Steplewski A., Johnson E. M., Khalili K., Amini S. 1995; A 39-kD DNA-binding protein from mouse brain stimulates transcription of myelin basic protein gene in oligodendrocytic cells. J Cell Biol 130:1171–1179 [CrossRef]
    [Google Scholar]
  30. Itoh H., Wortman M. J., Kanovsky M., Uson R. R., Gordon R. E., Alfano N., Johnson E. M. 1998; Alterations in Pur α levels and intracellular localization in the CV-1 cell cycle. Cell Growth Differ 9:651–665
    [Google Scholar]
  31. Johnson E. M. 2003; The Pur protein family: clues to function from recent studies on cancer and AIDS. Anticancer Res 23:2093–2100
    [Google Scholar]
  32. Johnson E. M., Kinoshita Y., Weinreb D. B., Wortman M. J., Simon R., Khalili K., Winckler B., Gordon J. 2006; Role of Pur α in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J Neurosci Res 83:929–943 [CrossRef]
    [Google Scholar]
  33. Karn J. 1991; Control of human immunodeficiency virus replication by the tat , rev , nef and protease genes. Curr Opin Immunol 3:526–536 [CrossRef]
    [Google Scholar]
  34. Kinoshita Y., Johnson E. M. 2004; Site-specific loading of an MCM protein complex in a DNA replication initiation zone upstream of the c-MYC gene in the HeLa cell cycle. J Biol Chem 279:35879–35889 [CrossRef]
    [Google Scholar]
  35. Krachmarov C. P., Chepenik L. G., Barr-Vagell S., Khalili K., Johnson E. M. 1996; Activation of the JC virus Tat-responsive transcriptional control element by association of the Tat protein of human immunodeficiency virus 1 with cellular protein Pur α . Proc Natl Acad Sci U S A 93:14112–14117 [CrossRef]
    [Google Scholar]
  36. Liu H., Barr S. M., Chu C., Kohtz D. S., Kinoshita Y., Johnson E. M. 2005; Functional interaction of Pur α with the Cdk2 moiety of cyclin A/Cdk2. Biochem Biophys Res Commun 328:851–857 [CrossRef]
    [Google Scholar]
  37. Ma M., Nath A. 1997; Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 71:2495–2499
    [Google Scholar]
  38. Marzocchetti A., Wuthrich C., Tan C. S., Tompkins T., Bernal-Cano F., Bhargava P., Ropper A. H., Koralnik I. J. 2008; Rearrangement of the JC virus regulatory region sequence in the bone marrow of a patient with rheumatoid arthritis and progressive multifocal leukoencephalopathy. J Neurovirol 14:455–458 [CrossRef]
    [Google Scholar]
  39. McKinnon R. D., Piras G., Ida J. A., Jr & Dubois-Dalcq M. 1993; A role for TGF- β in oligodendrocyte differentiation. J Cell Biol 121:1397–1407 [CrossRef]
    [Google Scholar]
  40. Rasty S., Thatikunta P., Gordon J., Khalili K., Amini S., Glorioso J. C. 1996; Human immunodeficiency virus tat gene transfer to the murine central nervous system using a replication-defective herpes simplex virus vector stimulates transforming growth factor β 1 gene expression. Proc Natl Acad Sci U S A 93:6073–6078 [CrossRef]
    [Google Scholar]
  41. Reinhold D., Wrenger S., Kahne T., Ansorge S. 1999; HIV-1 Tat: immunosuppression via TGF- β 1 induction. Immunol Today 20:384–385
    [Google Scholar]
  42. Rice A. P., Mathews M. B. 1988; Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature 332:551–553 [CrossRef]
    [Google Scholar]
  43. Romano G., Kasten M., De Falco G., Micheli P., Khalili K., Giordano A. 1999; Regulatory functions of Cdk9 and of cyclin T1 in HIV Tat transactivation pathway gene expression. J Cell Biochem 75:357–368 [CrossRef]
    [Google Scholar]
  44. Ross S., Cheung E., Petrakis T. G., Howell M., Kraus W. L., Hill C. S. 2006; Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription. EMBO J 25:4490–4502 [CrossRef]
    [Google Scholar]
  45. Sadaie M. R., Benter T., Wong-Staal F. 1988; Site-directed mutagenesis of two trans-regulatory genes (tat-III,trs) of HIV-1. Science 239:910–913 [CrossRef]
    [Google Scholar]
  46. Sawaya B. E., Thatikunta P., Denisova L., Brady J., Khalili K., Amini S. 1998; Regulation of TNF α and TGF β -1 gene transcription by HIV-1 Tat in CNS cells. J Neuroimmunol 87:33–42 [CrossRef]
    [Google Scholar]
  47. Schmierer B., Hill C. S. 2007; TGF β -SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8:970–982 [CrossRef]
    [Google Scholar]
  48. Schuster N., Bender H., Philippi A., Subramaniam S., Strelau J., Wang Z., Krieglstein K. 2002; TGF- β induces cell death in the oligodendroglial cell line OLI-neu. Glia 40:95–108 [CrossRef]
    [Google Scholar]
  49. Shi Y., Massague J. 2003; Mechanisms of TGF- β signaling from cell membrane to the nucleus. Cell 113:685–700 [CrossRef]
    [Google Scholar]
  50. Silvestri C., Narimatsu M., von Both I., Liu Y., Tan N. B., Izzi L., McCaffery P., Wrana J. L., Attisano L. 2008; Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development. Dev Cell 14:411–423 [CrossRef]
    [Google Scholar]
  51. Tanaka N., Nagao S., Tohgo A., Sekiguchi F., Kohno M., Ogawa H., Matsui T., Matsutani M. 1983; Effects of human fibroblast interferon on human gliomas transplanted into nude mice. Gann 74:308–316
    [Google Scholar]
  52. Thatikunta P., Sawaya B. E., Denisova L., Cole C., Yusibova G., Johnson E. M., Khalili K., Amini S. 1997; Identification of a cellular protein that binds to Tat-responsive element of TGF β -1 promoter in glial cells. J Cell Biochem 67:466–477 [CrossRef]
    [Google Scholar]
  53. Wei P., Garber M. E., Fang S. M., Fischer W. H., Jones K. A. 1998; A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462 [CrossRef]
    [Google Scholar]
  54. Wortman M. J., Krachmarov C. P., Kim J. H., Gordon R. G., Chepenik L. G., Brady N. N., Gallia G. L., Khalili K., Johnson E. M. 2000; Interaction of HIV-Tat with Pur- α in nuclei of human glial cells: characterization of RNA-mediated protein–protein binding. J Cell Biochem 77:65–74 [CrossRef]
    [Google Scholar]
  55. Wortman M. J., Johnson E. M., Bergemann A. D. 2005 Mechanism of DNA binding and localized strand separation by Pur α and comparison with Pur family member, Pur β Biochim Biophys Acta 174364–78 [CrossRef]
    [Google Scholar]
  56. Zhang Y., Feng X., We R., Derynck R. 1996; Receptor-associated Mad homologues synergize as effectors of the TGF-beta response. Nature 383:168–172 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.011072-0
Loading
/content/journal/jgv/10.1099/vir.0.011072-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed