1887

Abstract

The roles of recombination and accumulation of point mutations in the origin of new poliovirus (PV) characteristics have been hypothesized, but it is not known which are essential to evolution. We studied phenotypic differences between recombinant PV strains isolated from successive stool specimens of an oral PV vaccine recipient. The studied strains included three PV2/PV1 recombinants with increasing numbers of mutations in the VP1 gene, two of the three with an amino acid change I→T in the DE-loop of VP1, their putative PV1 parent and strains Sabin 1 and 2. Growth of these viruses was examined in three cell lines: colorectal adenocarcinoma, neuroblastoma and HeLa. The main observation was a higher growth rate between 4 and 6 h post-infection of the two recombinants with the I→T substitution. All recombinants grew at a higher rate than parental strains in the exponential phase of the replication cycle. In a temperature sensitivity test, the I→T-substituted recombinants replicated equally well at an elevated temperature. Complete genome sequencing of the three recombinants revealed 12 (3), 19 (3) and 27 (3) nucleotide (amino acid) differences from Sabin. Mutations were located in regions defining attenuation, temperature sensitivity, antigenicity and the -acting replicating element. The recombination site was in the 5′ end of 3D. In a competition assay, the most mutated recombinant beat parental Sabin in all three cell lines, strongly suggesting that this virus has an advantage. Two independent intertypic recombinants, PV3/PV1 and PV3/PV2, also showed similar growth advantages, but they also contained several point mutations. Thus, our data defend the hypothesis that accumulation of certain advantageous mutations plays a key role in gaining increased fitness.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.010942-0
2009-08-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/8/1859.html?itemId=/content/journal/jgv/10.1099/vir.0.010942-0&mimeType=html&fmt=ahah

References

  1. Agol, V. I. ( 1997; ). Recombination and other genomic rearrangements in picornaviruses. Semin Virol 8, 77–84.[CrossRef]
    [Google Scholar]
  2. Agol, V. I. ( 2006; ). Vaccine-derived polioviruses. Biologicals 34, 103–108.[CrossRef]
    [Google Scholar]
  3. Arita, M., Zhu, S. L., Yoshida, H., Yoneyama, T., Miyamura, T. & Shimizu, H. ( 2005; ). A Sabin 3-derived poliovirus recombinant contained a sequence homologous with indigenous human enterovirus species C in the viral polymerase coding region. J Virol 79, 12650–12657.[CrossRef]
    [Google Scholar]
  4. Blomqvist, S., Bruu, A. L., Stenvik, M. & Hovi, T. ( 2003; ). Characterization of a recombinant type 3/type 2 poliovirus isolated from a healthy vaccinee and containing a chimeric capsid protein VP1. J Gen Virol 84, 573–580.[CrossRef]
    [Google Scholar]
  5. Blomqvist, S., Savolainen, C., Laine, P., Hirttio, P., Lamminsalo, E., Penttila, E., Joks, S., Roivainen, M. & Hovi, T. ( 2004; ). Characterization of a highly evolved vaccine-derived poliovirus type 3 isolated from sewage in Estonia. J Virol 78, 4876–4883.[CrossRef]
    [Google Scholar]
  6. Bolanaki, E., Kottaridi, C., Markoulatos, P., Kyriakopoulou, Z., Margaritis, L. & Katsorchis, T. ( 2007; ). Partial 3D gene sequences of Coxsackie viruses reveal interspecies exchanges. Virus Genes 35, 129–140.[CrossRef]
    [Google Scholar]
  7. Brown, B., Oberste, M. S., Maher, K. & Pallansch, M. A. ( 2003; ). Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol 77, 8973–8984.[CrossRef]
    [Google Scholar]
  8. Cammack, N., Phillips, A., Dunn, G., Patel, V. & Minor, P. D. ( 1988; ). Intertypic genomic rearrangements of poliovirus strains in vaccinees. Virology 167, 507–514.[CrossRef]
    [Google Scholar]
  9. Cherkasova, E. A., Yakovenko, M. L., Rezapkin, G. V., Korotkova, E. A., Ivanova, O. E., Eremeeva, T. P., Krasnoproshina, L. I., Romanenkova, N. I., Rozaeva, N. R. & other authors ( 2005; ). Spread of vaccine-derived poliovirus from a paralytic case in an immunodeficient child: an insight into the natural evolution of oral polio vaccine. J Virol 79, 1062–1070.[CrossRef]
    [Google Scholar]
  10. Dahourou, G., Guillot, S., Le Gall, O. & Crainic, R. ( 2002; ). Genetic recombination in wild-type poliovirus. J Gen Virol 83, 3103–3110.
    [Google Scholar]
  11. Dedepsidis, E., Pliaka, V., Kyriakopoulou, Z., Brakoulias, C., Levidiotou-Stefanou, S., Pratti, A., Mamuris, Z. & Markoulatos, P. ( 2008; ). Complete genomic characterization of an intertypic Sabin 3/Sabin 2 capsid recombinant. FEMS Immunol Med Microbiol 52, 343–351.[CrossRef]
    [Google Scholar]
  12. El Bassioni, L., Barakat, I., Nasr, E., de Gourville, E. M., Hovi, T., Blomqvist, S., Burns, C., Stenvik, M., Gary, H. & other authors ( 2003; ). Prolonged detection of indigenous wild polioviruses in sewage from communities in Egypt. Am J Epidemiol 158, 807–815.[CrossRef]
    [Google Scholar]
  13. Furione, M., Guillot, S., Otelea, D., Balanant, J., Candrea, A. & Crainic, R. ( 1993; ). Polioviruses with natural recombinant genomes isolated from vaccine-associated paralytic poliomyelitis. Virology 196, 199–208.[CrossRef]
    [Google Scholar]
  14. Georgescu, M. M., Delpeyroux, F. & Crainic, R. ( 1995; ). Tripartite genome organization of a natural type 2 vaccine/nonvaccine recombinant poliovirus. J Gen Virol 76, 2343–2348.[CrossRef]
    [Google Scholar]
  15. Gmyl, A. P., Belousov, E. V., Maslova, S. V., Khitrina, E. V., Chetverin, A. B. & Agol, V. I. ( 1999; ). Nonreplicative RNA recombination in poliovirus. J Virol 73, 8958–8965.
    [Google Scholar]
  16. Goodfellow, I., Chaudhry, Y., Richardson, A., Meredith, J., Almond, J. W., Barclay, W. & Evans, D. J. ( 2000; ). Identification of a cis-acting replication element within the poliovirus coding region. J Virol 74, 4590–4600.[CrossRef]
    [Google Scholar]
  17. Guillot, S., Caro, V., Cuervo, N., Korotkova, E., Combiescu, M., Persu, A., Aubert-Combiescu, A., Delpeyroux, F. & Crainic, R. ( 2000; ). Natural genetic exchanges between vaccine and wild poliovirus strains in humans. J Virol 74, 8434–8443.[CrossRef]
    [Google Scholar]
  18. Hirst, G. K. ( 1962; ). Genetic recombination with Newcastle disease virus, polioviruses, and influenza. Cold Spring Harb Symp Quant Biol 27, 303–309.[CrossRef]
    [Google Scholar]
  19. Hogle, J. M., Chow, M. & Filman, D. J. ( 1985; ). Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229, 1358–1365.[CrossRef]
    [Google Scholar]
  20. Jiang, P., Faase, J. A., Toyoda, H., Paul, A., Wimmer, E. & Gorbalenya, A. E. ( 2007; ). Evidence for emergence of diverse polioviruses from C-cluster coxsackie A viruses and implications for global poliovirus eradication. Proc Natl Acad Sci U S A 104, 9457–9462.[CrossRef]
    [Google Scholar]
  21. Johnson, V. H. & Semler, B. L. ( 1988; ). Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5′-noncoding regions of viral RNAs. Virology 162, 47–57.[CrossRef]
    [Google Scholar]
  22. Kew, O., Morris-Glasgow, V., Landaverde, M., Burns, C., Shaw, J., Garib, Z., André, J., Blackman, E., Freeman, C. J. & other authors ( 2002; ). Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science 296, 356–359.[CrossRef]
    [Google Scholar]
  23. Kew, O. M., Wright, P. F., Agol, V. I., Delpeyroux, F., Shimizu, H., Nathanson, N. & Pallansch, M. A. ( 2004; ). Circulating vaccine-derived polioviruses: current state of knowledge. Bull World Health Organ 82, 16–23.
    [Google Scholar]
  24. Kok, C. C. & McMinn, P. C. ( 2009; ). Picornavirus RNA-dependent RNA polymerase. Int J Biochem Cell Biol 41, 498–502.[CrossRef]
    [Google Scholar]
  25. Kyriakopoulou, Z., Kottaridi, C., Dedepsidis, E., Bolanaki, E., Levidiotou-Stefanou, S. & Markoulatos, P. ( 2006; ). Molecular characterization of wild-type polioviruses isolated in Greece during the 1996 outbreak in Albania. J Clin Microbiol 44, 1150–1152.[CrossRef]
    [Google Scholar]
  26. Lai, M. M. ( 1992; ). RNA recombination in animal and plant viruses. Microbiol Rev 56, 61–79.
    [Google Scholar]
  27. Ledinko, N. ( 1963; ). Genetic recombination with poliovirus type 1. Studies of crosses between a normal horse serum-resistant mutant and several guanidine-resistant mutants of the same strain. Virology 20, 107–119.[CrossRef]
    [Google Scholar]
  28. Liu, H. M., Zheng, D. P., Zhang, L. B., Oberste, M. S., Pallansch, M. A. & Kew, O. M. ( 2000; ). Molecular evolution of a type 1 wild-vaccine poliovirus recombinant during widespread circulation in China. J Virol 74, 11153–11161.[CrossRef]
    [Google Scholar]
  29. Liu, H. M., Zheng, D. P., Zhang, L. B., Oberste, M. S., Kew, O. M. & Pallansch, M. A. ( 2003; ). Serial recombination during circulation of type 1 wild-vaccine recombinant polioviruses in China. J Virol 77, 10994–11005.[CrossRef]
    [Google Scholar]
  30. Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., Ingersoll, R., Sheppard, H. W. & Ray, S. C. ( 1999; ). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73, 152–160.
    [Google Scholar]
  31. Lu, H. H. & Wimmer, E. ( 1996; ). Poliovirus chimeras replicating under the translational control of genetic elements of hepatitis C virus reveal unusual properties of the internal ribosomal entry site of hepatitis C virus. Proc Natl Acad Sci U S A 93, 1412–1417.[CrossRef]
    [Google Scholar]
  32. Macadam, A. J., Arnold, C., Howlett, J., John, A., Marsden, S., Taffs, F., Reeve, P., Hamada, N., Wareham, K. & other authors ( 1989; ). Reversion of the attenuated and temperature-sensitive phenotypes of the Sabin type 3 strain of poliovirus in vaccinees. Virology 172, 408–414.[CrossRef]
    [Google Scholar]
  33. Macadam, A. J., Pollard, S. R., Ferguson, G., Dunn, G., Skuce, R., Almond, J. W. & Minor, P. D. ( 1991; ). The 5′ noncoding region of the type 2 poliovirus vaccine strain contains determinants of attenuation and temperature sensitivity. Virology 181, 451–458.[CrossRef]
    [Google Scholar]
  34. Martin, J., Dunn, G., Hull, R., Patel, V. & Minor, P. D. ( 2000; ). Evolution of the Sabin strain of type 3 poliovirus in an immunodeficient patient during the entire 637-day period of virus excretion. J Virol 74, 3001–3010.[CrossRef]
    [Google Scholar]
  35. Martin, J., Samoilovich, E., Dunn, G., Lackenby, A., Feldman, E., Heath, A., Svirchevskaya, E., Cooper, G., Yermalovich, M. & Minor, P. D. ( 2002; ). Isolation of an intertypic poliovirus capsid recombinant from a child with vaccine-associated paralytic poliomyelitis. J Virol 76, 10921–10928.[CrossRef]
    [Google Scholar]
  36. Minor, P. D., Ferguson, M., Evans, D. M., Almond, J. W. & Icenogle, J. P. ( 1986a; ). Antigenic structure of polioviruses of serotypes 1, 2 and 3. J Gen Virol 67, 1283–1291.[CrossRef]
    [Google Scholar]
  37. Minor, P. D., John, A., Ferguson, M. & Icenogle, J. P. ( 1986b; ). Antigenic and molecular evolution of the vaccine strain of type 3 poliovirus during the period of excretion by a primary vaccinee. J Gen Virol 67, 693–706.[CrossRef]
    [Google Scholar]
  38. Minor, P. D., Dunn, G., Evans, D. M., Magrath, D. I., John, A., Howlett, J., Phillips, A., Westrop, G., Wareham, K. & other authors ( 1989; ). The temperature sensitivity of the Sabin type 3 vaccine strain of poliovirus: molecular and structural effects of a mutation in the capsid protein VP3. J Gen Virol 70, 1117–1123.[CrossRef]
    [Google Scholar]
  39. Mulders, M. N., Reimerink, J. H., Stenvik, M., Alaeddinoglu, I., van der Avoort, H. G., Hovi, T. & Koopmans, M. P. ( 1999; ). A Sabin vaccine-derived field isolate of poliovirus type 1 displaying aberrant phenotypic and genetic features, including a deletion in antigenic site 1. J Gen Virol 80, 907–916.
    [Google Scholar]
  40. Oberste, M. S., Maher, K., Kilpatrick, D. R., Flemister, M. R., Brown, B. A. & Pallansch, M. A. ( 1999; ). Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol 37, 1288–1293.
    [Google Scholar]
  41. Pulli, T., Koskimies, P. & Hyypia, T. ( 1995; ). Molecular comparison of coxsackie A virus serotypes. Virology 212, 30–38.[CrossRef]
    [Google Scholar]
  42. Rakoto-Andrianarivelo, M., Gumede, N., Jegouic, S., Balanant, J., Andriamamonjy, S. N., Rabemanantsoa, S., Birmingham, M., Randriamanalina, B., Nkolomoni, L. & other authors ( 2008; ). Reemergence of recombinant vaccine-derived poliovirus outbreak in Madagascar. J Infect Dis 197, 1427–1435.[CrossRef]
    [Google Scholar]
  43. Ren, R. B., Moss, E. G. & Racaniello, V. R. ( 1991; ). Identification of two determinants that attenuate vaccine-related type 2 poliovirus. J Virol 65, 1377–1382.
    [Google Scholar]
  44. Rieder, E., Xiang, W., Paul, A. & Wimmer, E. ( 2003; ). Analysis of the cloverleaf element in a human rhinovirus type 14/poliovirus chimera: correlation of subdomain D structure, ternary protein complex formation and virus replication. J Gen Virol 84, 2203–2216.[CrossRef]
    [Google Scholar]
  45. Rousset, D., Rakoto-Andrianarivelo, M., Razafindratsimandresy, R., Randriamanalina, B., Guillot, S., Balanant, J., Mauclere, P. & Delpeyroux, F. ( 2003; ). Recombinant vaccine-derived poliovirus in Madagascar. Emerg Infect Dis 9, 885–887.[CrossRef]
    [Google Scholar]
  46. Samoilovich, E., Roivainen, M., Titov, L. P. & Hovi, T. ( 2003; ). Serotype-specific mucosal immune response and subsequent poliovirus replication in vaccinated children. J Med Virol 71, 274–280.[CrossRef]
    [Google Scholar]
  47. Shahmahmoodi, S., Parvaneh, N., Burns, C., Asghar, H., Mamishi, S., Tabatabaie, H., Chen, Q., Teimourian, S., Gooya, M. M. & other authors ( 2008; ). Isolation of a type 3 vaccine-derived poliovirus (VDPV) from an Iranian child with X-linked agammaglobulinemia. Virus Res 137, 168–172.[CrossRef]
    [Google Scholar]
  48. Shimizu, H., Thorley, B., Paladin, F. J., Brussen, K. A., Stambos, V., Yuen, L., Utama, A., Tano, Y., Arita, M. & other authors ( 2004; ). Circulation of type 1 vaccine-derived poliovirus in the Philippines in 2001. J Virol 78, 13512–13521.[CrossRef]
    [Google Scholar]
  49. Stanway, G. & Knowles, N. J. ( 2008; ). Taxonomic proposal to the ICTV executive committee to merge two existing species. http://talk.ictvonline.org/media/p/233.aspx
  50. Thompson, A. A. & Peersen, O. B. ( 2004; ). Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J 23, 3462–3471.[CrossRef]
    [Google Scholar]
  51. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  52. Westrop, G. D., Wareham, K. A., Evans, D. M., Dunn, G., Minor, P. D., Magrath, D. I., Taffs, F., Marsden, S., Skinner, M. A. & other authors ( 1989; ). Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. J Virol 63, 1338–1344.
    [Google Scholar]
  53. Yang, C. F., Naguib, T., Yang, S. J., Nasr, E., Jorba, J., Ahmed, N., Campagnoli, R., van der Avoort, H., Shimizu, H. & other authors ( 2003; ). Circulation of endemic type 2 vaccine-derived poliovirus in Egypt from 1983 to 1993. J Virol 77, 8366–8377.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.010942-0
Loading
/content/journal/jgv/10.1099/vir.0.010942-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error