1887

Abstract

Citrus exocortis viroid (CEVd) populations are composed of closely related haplotypes whose frequencies in the population result from the equilibrium between mutation, selection and genetic drift. The genetic diversity of CEVd populations infecting different citrus hosts was studied by comparing populations recovered from infected trifoliate orange and sour orange seedling trees after 10 years of evolution, with the ancestral population maintained for the same period in the original host, Etrog citron. Furthermore, populations isolated from these trifoliate orange and sour orange trees were transmitted back to Etrog citron plants and the evolution of their mutant spectra was studied. The results indicate that (i) the amount and composition of the within-plant genetic diversity generated varies between these two hosts and is markedly different from that which is characteristic of the original Etrog citron host and (ii) the genetic diversity found after transmitting back to Etrog citron is indistinguishable from that which is characteristic of the ancestral Etrog citron population, regardless of the citrus plant from which the evolved populations were isolated. The relationship between the CEVd populations from Etrog citron and trifoliate orange, both sensitive hosts, and those from sour orange, which is a tolerant host, is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.010769-0
2009-08-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/8/2040.html?itemId=/content/journal/jgv/10.1099/vir.0.010769-0&mimeType=html&fmt=ahah

References

  1. Ambrós, S., Hernández, C., Desvignes, J. C. & Flores, R. ( 1998; ). Genomic structure of three phenotypically different isolates of peach latent mosaic viroid: implications of the existence of constraints limiting the heterogeneity of viroid quasispecies. J Virol 72, 7397–7406.
    [Google Scholar]
  2. Ambrós, S., Hernández, C. & Flores, R. ( 1999; ). Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host. J Gen Virol 80, 2239–2252.
    [Google Scholar]
  3. Bernad, L. & Duran-Vila, N. ( 2006; ). A novel RT-PCR approach for detection and characterization of citrus viroids. Mol Cell Probes 20, 105–113.[CrossRef]
    [Google Scholar]
  4. Carbonell, A., Martínez de Alba, A. E., Flores, R. & Gago, S. ( 2008; ). Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families. Virology 371, 44–53.[CrossRef]
    [Google Scholar]
  5. Cha, R. S. & Thilly, W. G. ( 1993; ). Specificity, efficiency, and fidelity of PCR. Genome Res 3, S18–S29.[CrossRef]
    [Google Scholar]
  6. Codoñer, F. M., Daròs, J. A., Solé, R. V. & Elena, S. F. ( 2006; ). The fittest versus the flattest: experimental confirmation of the quasispecies effect with subviral pathogens. PLoS Pathog 2, e136 [CrossRef]
    [Google Scholar]
  7. Daròs, J. A., Elena, S. F. & Flores, R. ( 2006; ). Viroids: an Ariadne's thread into the RNA labyrinth. EMBO Rep 7, 593–598.[CrossRef]
    [Google Scholar]
  8. De Rijk, P., Wuyts, J. & De Wachter, R. ( 2003; ). RnaViz 2: an improved representation of RNA secondary structure. Bioinformatics 19, 299–300.[CrossRef]
    [Google Scholar]
  9. Diener, T. O. ( 1983; ). The viroid – a subviral pathogen. Am Sci 71, 481–489.
    [Google Scholar]
  10. Diener, T. O. ( 1995; ). Origin and evolution of viroids and viroid-like satellite RNAs. Virus Genes 11, 119–131.[CrossRef]
    [Google Scholar]
  11. Ding, B. & Itaya, A. ( 2007; ). Viroid: a useful model for studying the basic principles of infection and RNA biology. Mol Plant Microbe Interact 20, 7–20.[CrossRef]
    [Google Scholar]
  12. Ding, B., Kwon, M. O., Hammond, R. & Owens, R. ( 1997; ). Cell-to-cell movement of potato spindle tuber viroid. Plant J 12, 931–936.[CrossRef]
    [Google Scholar]
  13. Domingo, E., Martin, V., Perales, C., Grande-Pérez, A., García-Arriaza, J. & Arias, A. ( 2006; ). Viruses as quasispecies: biological implications. Curr Top Microbiol Immunol 299, 51–82.
    [Google Scholar]
  14. Elena, S. F., Dopazo, J., Flores, R., Diener, T. O. & Moya, A. ( 1991; ). Phylogeny of viroids, viroidlike satellite RNAs, and the viroidlike domain of hepatitis delta virus. Proc Natl Acad Sci U S A 88, 5631–5634.[CrossRef]
    [Google Scholar]
  15. Elena, S. F., Dopazo, J., de la Peña, M., Flores, R., Diener, T. O. & Moya, A. ( 2001; ). Phylogenetic analysis of viroid and viroid-like satellite RNAs from plants: a reassessment. J Mol Evol 53, 155–159.[CrossRef]
    [Google Scholar]
  16. Fagoaga, C., Semancik, J. S. & Duran-Vila, N. ( 1995; ). A citrus exocortis viroid variant from broad bean (Vicia faba L.): infectivity and pathogenesis. J Gen Virol 76, 2271–2277.[CrossRef]
    [Google Scholar]
  17. Fawcett, H. S. & Klotz, L. J. ( 1948; ). Exocortis on trifoliate orange. Citrus Leaves 28, 8–9.
    [Google Scholar]
  18. Flores, R., Di Serio, F. & Hernández, C. ( 1997; ). Viroids: the noncoding genomes. Semin Virol 8, 65–73.[CrossRef]
    [Google Scholar]
  19. Flores, R., Hernández, C., Martínez de Alba, A. E., Daròs, J. A. & Di Serio, F. ( 2005; ). Viroids and viroid–host interactions. Annu Rev Phytopathol 43, 117–139.[CrossRef]
    [Google Scholar]
  20. Foissac, X. & Duran-Vila, N. ( 2000; ). Characterization of two citrus apscaviroids isolated in Spain. Arch Virol 145, 1975–1983.[CrossRef]
    [Google Scholar]
  21. Gandía, M. & Duran-Vila, N. ( 2004; ). Variability of the progeny of a sequence variant citrus bent leaf viroid (CBLVd). Arch Virol 149, 407–416.[CrossRef]
    [Google Scholar]
  22. Gandía, M., Rubio, L., Palacio, A. & Duran-Vila, N. ( 2005; ). Genetic variation and population structure of an isolate of citrus exocortis viroid (CEVd) and of the progenies of two infectious sequence variants. Arch Virol 150, 1945–1957.[CrossRef]
    [Google Scholar]
  23. Gandía, M., Bernad, L., Rubio, L. & Duran-Vila, N. ( 2007; ). Host effect on the molecular and biological properties of a citrus exocortis viroid isolate from Vicia faba. Phytopathology 97, 1004–1010.[CrossRef]
    [Google Scholar]
  24. García-Arenal, F., Fraile, A. & Malpica, J. M. ( 2003; ). Variation and evolution of plant virus populations. Int Microbiol 6, 225–232.[CrossRef]
    [Google Scholar]
  25. Gómez, G. & Pallás, V. ( 2007; ). Mature monomeric forms of Hop stunt viroid resist RNA silencing in transgenic plants. Plant J 51, 1041–1049.[CrossRef]
    [Google Scholar]
  26. Góra, A., Candresse, T. & Zagórski, W. ( 1994; ). Analysis of the population structure of three phenotypically different PSTVd isolates. Arch Virol 138, 233–245.[CrossRef]
    [Google Scholar]
  27. Góra, A., Candresse, T. & Zagórski, W. ( 1996; ). Use of intramolecular chimeras to map molecular determinants of symptom severity of potato spindle tuber viroid (PSTVd). Arch Virol 141, 2045–2055.[CrossRef]
    [Google Scholar]
  28. Góra-Sochacka, A., Kierzek, A., Candresse, T. & Zagórski, W. ( 1997; ). The genetic stability of potato spindle tuber viroid (PSTVd) molecular variants. RNA 3, 68–74.
    [Google Scholar]
  29. Góra-Sochacka, A., Candresse, T. & Zagórski, W. ( 2001; ). Genetic variability of potato spindle tuber viroid RNA replicon. Acta Biochim Pol 48, 467–476.
    [Google Scholar]
  30. Gozmanova, M., Denti, M. A., Minkov, I. N., Tsagris, M. & Tabler, M. ( 2003; ). Characterization of the RNA motif responsible for the specific interaction of potato spindle tuber viroid RNA (PSTVd) and the tomato protein Virp1. Nucleic Acids Res 31, 5534–5543.[CrossRef]
    [Google Scholar]
  31. Gruner, R., Fels, A., Qu, F., Zimmat, R., Steger, G. & Riesner, D. ( 1995; ). Interdependence of pathogenicity and replicability with potato spindle tuber viroid. Virology 209, 60–69.[CrossRef]
    [Google Scholar]
  32. Hammond, R. W. ( 1994; ). Agrobacterium-mediated inoculation of PSTVd cDNAs onto tomato reveals the biological effect of apparently lethal mutations. Virology 201, 36–45.[CrossRef]
    [Google Scholar]
  33. Hammond, R., Smith, D. R. & Diener, T. O. ( 1989; ). Nucleotide sequence and proposed secondary structure of Columnea latent viroid: a natural mosaic of viroid sequences. Nucleic Acids Res 17, 10083–10094.[CrossRef]
    [Google Scholar]
  34. Haseloff, J., Mohamed, N. A. & Symons, R. H. ( 1982; ). Viroid RNAs of cadang-cadang disease of coconuts. Nature 299, 316–321.[CrossRef]
    [Google Scholar]
  35. Hernández, C. & Flores, R. ( 1992; ). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proc Natl Acad Sci U S A 89, 3711–3715.[CrossRef]
    [Google Scholar]
  36. Higgins, D. G. & Sharp, P. M. ( 1989; ). Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci 5, 151–153.
    [Google Scholar]
  37. Itaya, A., Folimonov, A., Matsuda, Y., Nelson, R. S. & Ding, B. ( 2001; ). Potato spindle tuber as inducer of RNA silencing in infected tomato. Mol Plant Microbe Interact 14, 1332–1334.[CrossRef]
    [Google Scholar]
  38. Itaya, A., Zhong, X., Bundschuh, R., Qi, Y., Wang, Y., Takeda, R., Harris, A. R., Molina, C., Nelson, R. S. & Ding, B. ( 2007; ). A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J Virol 81, 2980–2994.[CrossRef]
    [Google Scholar]
  39. Keese, P. & Symons, R. H. ( 1985; ). Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sci U S A 82, 4582–4586.[CrossRef]
    [Google Scholar]
  40. Kofalvi, S. A., Marcos, J. F., Cañizares, M. C., Pallás, V. & Candresse, T. ( 1997; ). Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates. J Gen Virol 78, 3177–3186.
    [Google Scholar]
  41. Korber, B. T., Kunstman, K. J., Patterson, B. K., Furtado, M., McEvilly, M. M., Levy, R. & Wolinsky, S. M. ( 1994; ). Genetic differences between blood and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J Virol 68, 7467–7481.
    [Google Scholar]
  42. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  43. Lin, S. S., Wu, H. W., Elena, S. F., Chen, K. C., Niu, Q. W., Yeh, S. D., Chen, C. C. & Chua, N. H. ( 2009; ). Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog 5, e1000312 [CrossRef]
    [Google Scholar]
  44. Maniataki, E., Martínez de Alba, A. E., Sagesser, R., Tabler, M. & Tsagris, M. ( 2003; ). Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with the host protein VirP1. RNA 9, 346–354.[CrossRef]
    [Google Scholar]
  45. Martín, R., Arenas, C., Daròs, J. A., Covarrubias, A., Reyes, J. L. & Chua, N. H. ( 2007; ). Characterization of small RNAs derived from Citrus exocortis viroid (CEVd) in infected tomato plants. Virology 367, 135–146.[CrossRef]
    [Google Scholar]
  46. Navarro, B. & Flores, R. ( 1997; ). Chrysanthemum chlorotic mottle viroid: unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proc Natl Acad Sci U S A 94, 11262–11267.[CrossRef]
    [Google Scholar]
  47. Owens, R. A., Yang, G., Gundersen-Rindal, D., Hammond, R. W., Candresse, T. & Bar-Joseph, M. ( 2000; ). Both point mutation and RNA recombination contribute to the sequence diversity of citrus viroid III. Virus Genes 20, 243–252.[CrossRef]
    [Google Scholar]
  48. Owens, R. A., Thompson, S. M. & Kramer, M. ( 2003; ). Identification of neutral mutants surrounding two naturally occurring variants of Potato spindle tuber viroid. J Gen Virol 84, 751–756.[CrossRef]
    [Google Scholar]
  49. Palacio, A. & Duran-Vila, N. ( 1999; ). Single-strand conformation polymorphism (SSCP) analysis as a tool for viroid characterisation. J Virol Methods 77, 27–36.[CrossRef]
    [Google Scholar]
  50. Palacio-Bielsa, A., Romero-Durbán, J. & Duran-Vila, N. ( 2004; ). Characterization of citrus HSVd isolates. Arch Virol 149, 537–552.[CrossRef]
    [Google Scholar]
  51. Pita, J. S., de Miranda, J. R., Schneider, W. L. & Roossinck, M. J. ( 2007; ). Environment determines fidelity for an RNA virus replicase. J Virol 81, 9072–9077.[CrossRef]
    [Google Scholar]
  52. Polivka, H., Staub, U. & Gross, H. J. ( 1996; ). Variation of viroid profiles in individual grapevine plants: novel grapevine yellow speckle viroid 1 mutants show alterations of hairpin I. J Gen Virol 77, 155–161.[CrossRef]
    [Google Scholar]
  53. Qi, Y., Pelissier, T., Itaya, A., Hunt, E., Wassenegger, M. & Ding, B. ( 2004; ). Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. Plant Cell 16, 1741–1752.[CrossRef]
    [Google Scholar]
  54. Rakowski, A. G. & Symons, R. H. ( 1989; ). Comparative sequence studies of variants of avocado sunblotch viroid. Virology 173, 352–356.[CrossRef]
    [Google Scholar]
  55. Rigden, J. E. & Rezaian, M. A. ( 1993; ). Analysis of sequence variation in grapevine yellow speckle viroid 1 reveals two distinct alternative structures for the pathogenic domain. Virology 193, 474–477.
    [Google Scholar]
  56. Shannon, C. E. ( 1948; ). A mathematical theory of communication. Bell System Tech J 27, 379–423. 623–656.
    [Google Scholar]
  57. Skoric, D., Conerly, M., Szychowski, J. A. & Semancik, J. S. ( 2001; ). CEVd-induced symptom modification as a response to a host-specific temperature-sensitive reaction. Virology 280, 115–123.[CrossRef]
    [Google Scholar]
  58. Szychowski, J. A., Vidalakis, G. & Semancik, J. S. ( 2005; ). Host-directed processing of Citrus exocortis viroid. J Gen Virol 86, 473–477.[CrossRef]
    [Google Scholar]
  59. Tabler, M. & Tsagris, M. ( 2004; ). Viroids: petite RNA pathogens with distinguished talents. Trends Plant Sci 9, 339–348.[CrossRef]
    [Google Scholar]
  60. Teycheney, P. Y., Laboureau, N., Iskra-Caruana, M. L. & Candresse, T. ( 2005; ). High genetic variability and evidence for plant-to-plant transfer of Banana mild mosaic virus. J Gen Virol 86, 3179–3187.[CrossRef]
    [Google Scholar]
  61. Visvader, J. E. & Symons, R. H. ( 1985; ). Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res 13, 2907–2920.[CrossRef]
    [Google Scholar]
  62. Visvader, J. E., Gould, A. R., Bruening, G. E. & Symons, R. H. ( 1982; ). Citrus exocortis viroid: nucleotide sequence and secondary structure of an Australian isolate. FEBS Lett 137, 288–292.[CrossRef]
    [Google Scholar]
  63. Vives, M. C., Rubio, L., Galipienso, L., Navarro, L., Moreno, P. & Guerri, J. ( 2002; ). Low genetic variation between isolates of Citrus leaf blotch virus from different host species and of different geographical origins. J Gen Virol 83, 2587–2591.
    [Google Scholar]
  64. Wang, M. B., Bian, X. Y., Wu, L. M., Liu, L. X., Smith, N. A., Isenegger, D., Wu, R. M., Masuta, C., Vance, V. B. & other authors ( 2004; ). On the role of RNA silencing in the pathogenicity and evolution of viroids and viral satellites. Proc Natl Acad Sci U S A 101, 3275–3280.[CrossRef]
    [Google Scholar]
  65. Zhong, X., Archual, A. J., Amin, A. A. & Ding, B. ( 2008; ). A genomic map of viroid RNA motifs critical for replication and systemic trafficking. Plant Cell 20, 35–47.[CrossRef]
    [Google Scholar]
  66. Zhu, Y., Green, L., Woo, Y. M., Owens, R. & Ding, B. ( 2001; ). Cellular basis of potato spindle tuber viroid systemic movement. Virology 279, 69–77.[CrossRef]
    [Google Scholar]
  67. Zhu, Y., Qi, Y., Xun, Y., Owens, R. & Ding, B. ( 2002; ). Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. Plant Physiol 130, 138–146.[CrossRef]
    [Google Scholar]
  68. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.010769-0
Loading
/content/journal/jgv/10.1099/vir.0.010769-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error