1887

Abstract

Human cytomegalovirus (HCMV) is a ubiquitous pathogen with a predilection for dendritic cells (DCs). Latently infected myeloid progenitor cells develop into actively infected DCs with impaired functionality, allowing dissemination and transfer of virus throughout the body. However, the viral genes expressed in DCs and their effect on the cellular transcriptome are currently unknown. We investigated human DCs infected with HCMV by using SuperSAGE, allowing us to analyse the transcriptomes of both host and pathogen simultaneously. A small number of viral transcripts were expressed strongly and rapidly post-infection. However, only two were of the immediate-early class, including one with an unknown function. The viral genes expressed reflected the cellular milieu, with the majority having a known or suspected immune-evasion function. Several viral genes identified lack a known function and may fulfil specialized roles within DCs. The cellular response to infection included a strong interferon response, induction of cytokine and anti-apoptotic genes and alterations in genes involved in antigen presentation. We demonstrated the validity of our approach by showing that novel changes first seen in the transcriptome were reflected in the phenotype of HCMV-infected DCs. Delineation of the transcriptional changes underlying the phenotype of HCMV-infected DCs allows a better understanding of how a herpesvirus infects DCs and pinpoints linkages between phenotype and specific viral genes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.010538-0
2009-09-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/9/2221.html?itemId=/content/journal/jgv/10.1099/vir.0.010538-0&mimeType=html&fmt=ahah

References

  1. Adair, R., Liebisch, G. W., Su, Y. & Colberg-Poley, A. M. ( 2004; ). Alteration of cellular RNA splicing and polyadenylation machineries during productive human cytomegalovirus infection. J Gen Virol 85, 3541–3553.[CrossRef]
    [Google Scholar]
  2. Andrews, D. M., Andoniou, C. E., Granucci, F., Ricciardi-Castagnoli, P. & Degli-Esposti, M. A. ( 2001; ). Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat Immunol 2, 1077–1084.[CrossRef]
    [Google Scholar]
  3. Bresnahan, W. A. & Shenk, T. ( 2000; ). A subset of viral transcripts packaged within human cytomegalovirus particles. Science 288, 2373–2376.[CrossRef]
    [Google Scholar]
  4. Cheriyath, V., Glaser, K. B., Waring, J. F., Baz, R., Hussein, M. A. & Borden, E. C. ( 2007; ). G1P3, an IFN-induced survival factor, antagonizes TRAIL-induced apoptosis in human myeloma cells. J Clin Invest 117, 3107–3117.[CrossRef]
    [Google Scholar]
  5. Cheung, A. K., Abendroth, A., Cunningham, A. L. & Slobedman, B. ( 2006; ). Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells. Blood 108, 3691–3699.[CrossRef]
    [Google Scholar]
  6. Compton, T., Kurt-Jones, E. A., Boehme, K. W., Belko, J., Latz, E., Golenbock, D. T. & Finberg, R. W. ( 2003; ). Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77, 4588–4596.[CrossRef]
    [Google Scholar]
  7. Fenwick, M. L. & McMenamin, M. M. ( 1984; ). Early virion-associated suppression of cellular protein synthesis is accompanied by inactivation of mRNA. J Gen Virol 65, 1225–1228.[CrossRef]
    [Google Scholar]
  8. Geijtenbeek, T. B., van Vliet, S. J., Engering, A., 't Hart, B. A. & van Kooyk, Y. ( 2004; ). Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 22, 33–54.[CrossRef]
    [Google Scholar]
  9. Goodrum, F. D., Jordan, C. T., High, K. & Shenk, T. ( 2002; ). Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc Natl Acad Sci U S A 99, 16255–16260.[CrossRef]
    [Google Scholar]
  10. Goodrum, F., Jordan, C. T., Terhune, S. S., High, K. & Shenk, T. ( 2004; ). Differential outcomes of human cytomegalovirus infection in primitive hematopoietic cell subpopulations. Blood 104, 687–695.[CrossRef]
    [Google Scholar]
  11. Gordon, S. ( 2002; ). Pattern recognition receptors: doubling up for the innate immune response. Cell 111, 927–930.[CrossRef]
    [Google Scholar]
  12. Greijer, A. E., Dekkers, C. A. & Middeldorp, J. M. ( 2000; ). Human cytomegalovirus virions differentially incorporate viral and host cell RNA during the assembly process. J Virol 74, 9078–9082.[CrossRef]
    [Google Scholar]
  13. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. ( 2002; ). Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20, 621–667.[CrossRef]
    [Google Scholar]
  14. Halary, F., Amara, A., Lortat-Jacob, H., Messerle, M., Delaunay, T., Houles, C., Fieschi, F., Arenzana-Seisdedos, F., Moreau, J. F. & Dechanet-Merville, J. ( 2002; ). Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17, 653–664.[CrossRef]
    [Google Scholar]
  15. Haller, O. & Kochs, G. ( 2002; ). Interferon-induced Mx proteins: dynamin-like GTPases with antiviral activity. Traffic 3, 710–717.[CrossRef]
    [Google Scholar]
  16. Harte, M. T., Haga, I. R., Maloney, G., Gray, P., Reading, P. C., Bartlett, N. W., Smith, G. L., Bowie, A. & O'Neill, L. A. ( 2003; ). The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197, 343–351.[CrossRef]
    [Google Scholar]
  17. Hashimoto, S. I., Suzuki, T., Nagai, S., Yamashita, T., Toyoda, N. & Matsushima, K. ( 2000; ). Identification of genes specifically expressed in human activated and mature dendritic cells through serial analysis of gene expression. Blood 96, 2206–2214.
    [Google Scholar]
  18. Huang, Q., Liu, D., Majewski, P., Schulte, L. C., Korn, J. M., Young, R. A., Lander, E. S. & Hacohen, N. ( 2001; ). The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870–875.[CrossRef]
    [Google Scholar]
  19. Hui, D. J., Bhasker, C. R., Merrick, W. C. & Sen, G. C. ( 2003; ). Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP.Met-tRNAi. J Biol Chem 278, 39477–39482.[CrossRef]
    [Google Scholar]
  20. Ibanez, C. E., Schrier, R., Ghazal, P., Wiley, C. & Nelson, J. A. ( 1991; ). Human cytomegalovirus productively infects primary differentiated macrophages. J Virol 65, 6581–6588.
    [Google Scholar]
  21. Inohara, N., Chamaillard, M., McDonald, C. & Nuñez, G. ( 2005; ). NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu Rev Biochem 74, 355–383.[CrossRef]
    [Google Scholar]
  22. Izmailova, E., Bertley, F. M., Huang, Q., Makori, N., Miller, C. J., Young, R. A. & Aldovini, A. ( 2003; ). HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat Med 9, 191–197.[CrossRef]
    [Google Scholar]
  23. Jacinto, R., Hartung, T., McCall, C. & Li, L. ( 2002; ). Lipopolysaccharide- and lipoteichoic acid-induced tolerance and cross-tolerance: distinct alterations in IL-1 receptor-associated kinase. J Immunol 168, 6136–6141.[CrossRef]
    [Google Scholar]
  24. Kenzelmann, M. & Muhlemann, K. ( 2000; ). Transcriptome analysis of fibroblast cells immediate-early after human cytomegalovirus infection. J Mol Biol 304, 741–751.[CrossRef]
    [Google Scholar]
  25. Kondo, K., Kaneshima, H. & Mocarski, E. S. ( 1994; ). Human cytomegalovirus latent infection of granulocyte–macrophage progenitors. Proc Natl Acad Sci U S A 91, 11879–11883.[CrossRef]
    [Google Scholar]
  26. Landmann, S., Muhlethaler-Mottet, A., Bernasconi, L., Suter, T., Waldburger, J. M., Masternak, K., Arrighi, J. F., Hauser, C., Fontana, A. & Reith, W. ( 2001; ). Maturation of dendritic cells is accompanied by rapid transcriptional silencing of class II transactivator (CIITA) expression. J Exp Med 194, 379–391.[CrossRef]
    [Google Scholar]
  27. Lathey, J. L. & Spector, S. A. ( 1991; ). Unrestricted replication of human cytomegalovirus in hydrocortisone-treated macrophages. J Virol 65, 6371–6375.
    [Google Scholar]
  28. Mach, M., Stamminger, T. & Jahn, G. ( 1989; ). Human cytomegalovirus: recent aspects from molecular biology. J Gen Virol 70, 3117–3146.[CrossRef]
    [Google Scholar]
  29. Maciejewski, J. P., Bruening, E. E., Donahue, R. E., Mocarski, E. S., Young, N. S. & St Jeor, S. C. ( 1992; ). Infection of hematopoietic progenitor cells by human cytomegalovirus. Blood 80, 170–178.
    [Google Scholar]
  30. Matsumura, H., Reich, S., Ito, A., Saitoh, H., Kamoun, S., Winter, P., Kahl, G., Reuter, M., Kruger, D. H. & Terauchi, R. ( 2003; ). Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proc Natl Acad Sci U S A 100, 15718–15723.[CrossRef]
    [Google Scholar]
  31. Matsumura, H., Ito, A., Saitoh, H., Winter, P., Kahl, G., Reuter, M., Kruger, D. H. & Terauchi, R. ( 2005; ). SuperSAGE. Cell Microbiol 7, 11–18.
    [Google Scholar]
  32. Matsumura, H., Bin Nasir, K. H., Yoshida, K., Ito, A., Kahl, G., Kruger, D. H. & Terauchi, R. ( 2006; ). SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays. Nat Methods 3, 469–474.[CrossRef]
    [Google Scholar]
  33. Meisel, A., Bickle, T. A., Kruger, D. H. & Schroeder, C. ( 1992; ). Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage. Nature 355, 467–469.[CrossRef]
    [Google Scholar]
  34. Mendelson, M., Monard, S., Sissons, P. & Sinclair, J. ( 1996; ). Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol 77, 3099–3102.[CrossRef]
    [Google Scholar]
  35. Möncke-Buchner, E., Mackeldanz, P., Krüger, D. H. & Reuter, M. ( 2004; ). Overexpression and affinity chromatography purification of the type III restriction endonuclease EcoP15I for use in transcriptome analysis. J Biotechnol 114, 99–106.[CrossRef]
    [Google Scholar]
  36. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. ( 2005; ). Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6, 769–776.[CrossRef]
    [Google Scholar]
  37. Plachter, B., Traupe, B., Albrecht, J. & Jahn, G. ( 1988; ). Abundant 5 kb RNA of human cytomegalovirus without a major translational reading frame. J Gen Virol 69, 2251–2266.[CrossRef]
    [Google Scholar]
  38. Raftery, M. J., Schwab, M., Eibert, S. M., Samstag, Y., Walczak, H. & Schonrich, G. ( 2001; ). Targeting the function of mature dendritic cells by human cytomegalovirus: a multilayered viral defense strategy. Immunity 15, 997–1009.[CrossRef]
    [Google Scholar]
  39. Raftery, M. J., Winau, F., Giese, T., Kaufmann, S. H. E., Schaible, U. E. & Schönrich, G. ( 2008; ). Viral danger signals control CD1d de novo synthesis and NKT cell activation. Eur J Immunol 38, 668–679.[CrossRef]
    [Google Scholar]
  40. Reeves, M. B., Lehner, P. J., Sissons, J. G. P. & Sinclair, J. H. ( 2005; ). An in vitro model for the regulation of human cytomegalovirus latency and reactivation in dendritic cells by chromatin remodelling. J Gen Virol 86, 2949–2954.[CrossRef]
    [Google Scholar]
  41. Reeves, M. B., Davies, A. A., McSharry, B. P., Wilkinson, G. W. & Sinclair, J. H. ( 2007; ). Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316, 1345–1348.[CrossRef]
    [Google Scholar]
  42. Rowshani, A. T., Strik, M. C., Molenaar, R., Yong, S. L., Wolbink, A. M., Bemelman, F. J., Hack, C. E. & Ten Berge, I. J. ( 2005; ). The granzyme B inhibitor SERPINB9 (protease inhibitor 9) circulates in blood and increases on primary cytomegalovirus infection after renal transplantation. J Infect Dis 192, 1908–1911.[CrossRef]
    [Google Scholar]
  43. Rozen, S. & Skaletsky, H. J. ( 2000; ). Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365–386. Edited by S. Krawetz & S. Misener. Totowa, NJ: Humana Press.
  44. Sallusto, F., Palermo, B., Lenig, D., Miettinen, M., Matikainen, S., Julkunen, I., Forster, R., Burgstahler, R., Lipp, M. & Lanzavecchia, A. ( 1999; ). Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 29, 1617–1625.[CrossRef]
    [Google Scholar]
  45. Seo, T., Lee, D., Shim, Y. S., Angell, J. E., Chidambaram, N. V., Kalvakolanu, D. V. & Choe, J. C. ( 2002; ). Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. J Virol 76, 8797–8807.[CrossRef]
    [Google Scholar]
  46. Siedlar, M., Frankenberger, M., Benkhart, E., Espevik, T., Quirling, M., Brand, K., Zembala, M. & Ziegler-Heitbrock, L. ( 2004; ). Tolerance induced by the lipopeptide Pam3Cys is due to ablation of IL-1R-associated kinase-1. J Immunol 173, 2736–2745.[CrossRef]
    [Google Scholar]
  47. Simmen, K. A., Singh, J., Luukkonen, B. G., Lopper, M., Bittner, A., Miller, N. E., Jackson, M. R., Compton, T. & Fruh, K. ( 2001; ). Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc Natl Acad Sci U S A 98, 7140–7145.[CrossRef]
    [Google Scholar]
  48. Sindre, H., Tjoonnfjord, G. E., Rollag, H., Ranneberg-Nilsen, T., Veiby, O. P., Beck, S., Degre, M. & Hestdal, K. ( 1996; ). Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. Blood 88, 4526–4533.
    [Google Scholar]
  49. Slobedman, B., Stern, J. L., Cunningham, A. L., Abendroth, A., Abate, D. A. & Mocarski, E. S. ( 2004; ). Impact of human cytomegalovirus latent infection on myeloid progenitor cell gene expression. J Virol 78, 4054–4062.[CrossRef]
    [Google Scholar]
  50. Tabeta, K., Georgel, P., Janssen, E., Du, X., Hoebe, K., Crozat, K., Mudd, S., Shamel, L., Sovath, S. & other authors ( 2004; ). Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A 101, 3516–3521.[CrossRef]
    [Google Scholar]
  51. Vilain, C., Libert, F., Venet, D., Costagliola, S. & Vassart, G. ( 2003; ). Small amplified RNA-SAGE: an alternative approach to study transcriptome from limiting amount of mRNA. Nucleic Acids Res 31, e24 [CrossRef]
    [Google Scholar]
  52. Wagenführ, K., Pieper, S., Mackeldanz, P., Linscheid, M., Krüger, D. H. & Reuter, M. ( 2007; ). Structural domains in the type III restriction endonuclease EcoP15I: characterization by limited proteolysis, mass spectrometry and insertional mutagenesis. J Mol Biol 366, 93–102.[CrossRef]
    [Google Scholar]
  53. Wang, D., Bresnahan, W. & Shenk, T. ( 2004; ). Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc Natl Acad Sci U S A 101, 16642–16647.[CrossRef]
    [Google Scholar]
  54. Yeo, W. M., Isegawa, Y. & Chow, V. T. K. ( 2008; ). The U95 protein of human herpesvirus type 6B interacts with human GRIM-19: silencing of U95 expression reduces viral load and abrogates loss of mitochondrial membrane potential. J Virol 82, 1011–1020.[CrossRef]
    [Google Scholar]
  55. Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T. & Shenk, T. ( 1998; ). Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc Natl Acad Sci U S A 95, 14470–14475.[CrossRef]
    [Google Scholar]
  56. Zilliox, M. J., Parmigiani, G. & Griffin, D. E. ( 2006; ). Gene expression patterns in dendritic cells infected with measles virus compared with other pathogens. Proc Natl Acad Sci U S A 103, 3363–3368.[CrossRef]
    [Google Scholar]
  57. Zucchini, N., Bessou, G., Traub, S., Robbins, S. H., Uematsu, S., Akira, S., Alexopoulou, L. & Dalod, M. ( 2008; ). Cutting edge: overlapping functions of TLR7 and TLR9 for innate defense against a herpesvirus infection. J Immunol 180, 5799–5803.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.010538-0
Loading
/content/journal/jgv/10.1099/vir.0.010538-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2221 – 2233

Primers used for RT-PCR and qRT-PCR.

Abundantly expressed cellular genes.

[ Single PDF file] (94 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error