Morphological changes in human neural cells following tick-borne encephalitis virus infection Free

Abstract

Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10 000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.010058-0
2009-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/7/1649.html?itemId=/content/journal/jgv/10.1099/vir.0.010058-0&mimeType=html&fmt=ahah

References

  1. Beer S., Brune N., Kesselring J. 1999; Detection of anterior horn lesions by MRI in Central European tick-borne encephalomyelitis. J Neurol 246:1169–1171 [CrossRef]
    [Google Scholar]
  2. Chen C. J., Liao S. L., Kuo M. D., Wang Y. M. 2000; Astrocytic alteration induced by Japanese encephalitis virus infection. Neuroreport 11:1933–1937 [CrossRef]
    [Google Scholar]
  3. Chhabra M., Mittal V., Jaiswal R., Malik S., Gupta M., Lal S. 2007; Development and evaluation of an in vitro isolation of street rabies virus in mouse neuroblastoma cells as compared to conventional tests used for diagnosis of rabies. Indian J Med Microbiol 25:263–266 [CrossRef]
    [Google Scholar]
  4. Chu J. J. H., Ng M. L. 2002; Trafficking mechanism of West Nile (Sarafend) virus structural proteins. J Med Virol 67:127–136 [CrossRef]
    [Google Scholar]
  5. Chu J. J. H., Ng M. L. 2003; The mechanism of cell death during West Nile virus infection is dependent on initial infectious dose. J Gen Virol 84:3305–3314 [CrossRef]
    [Google Scholar]
  6. Chu P. W. G., Westaway E. G. 1992; Molecular and ultrastructural analysis of heavy membrane fraction associated with the replication of Kunjin virus RNA. Arch Virol 125:177–191 [CrossRef]
    [Google Scholar]
  7. Chu J. J. H., Choo B. G. H., Lee J. W. M., Ng M. L. 2003; Actin filaments participate in West Nile (Sarafend) virus maturation process. J Med Virol 71:463–472 [CrossRef]
    [Google Scholar]
  8. Cinatl J., Gussetis E. S., Cinatl J., Jr., Ebener U., Mainke M., Schwabe D., Doerr H. W., Kornhuber B., Gerein V. 1990; Differentiation arrest in neuroblastoma cell culture. J Cancer Res Clin Oncol 116:Suppl9–14
    [Google Scholar]
  9. Couderc T., Guivel-Benhassine F., Calaora V., Gosselin A. S., Blondel B. 2002; An ex vivo murine model to study poliovirus-induced apoptosis in nerve cells. J Gen Virol 83:1925–1930
    [Google Scholar]
  10. De Madrid A. T., Porterfield J. S. 1969; A simple microculture method for the study of group B arboviruses. Bull World Health Organ 40:113–121
    [Google Scholar]
  11. Despres P., Frenkiel M.-P., Ceccaldi P.-M., Dos Cantos C. D., Deubel V. 1998; Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses. J Virol 72:823–829
    [Google Scholar]
  12. Gelpi E., Preusser M., Garzuly F., Holzmann H., Heinz F. X., Budka H. 2005; Visualization of Central European tick-borne encephalitis infection in fatal human cases. J Neuropathol Exp Neurol 64:506–512
    [Google Scholar]
  13. Gelpi E., Preusser M., Laggner U., Garzuly F., Holzmann H., Heinz F. X., Budka H. 2006; Inflammatory response in human tick-borne encephalitis: analysis of postmortem brain tissue. J Neurovirol 12:322–327 [CrossRef]
    [Google Scholar]
  14. Greber U. F., Way M. 2006; A superhighway to virus infection. Cell 124:741–754 [CrossRef]
    [Google Scholar]
  15. Gritsun T. S., Lashkevich V. A., Gould E. A. 2003; Tick-borne encephalitis. Antiviral Res 57:129–146 [CrossRef]
    [Google Scholar]
  16. Hase T. 1993; Virus–neuron interactions in the mouse brain infected with Japanese encephalitis virus. Virchows Arch B Cell Pathol Incl Mol Pathol 64:161–170 [CrossRef]
    [Google Scholar]
  17. Hase T., Summers P. L., Eckels K. H., Baze W. B. 1987; An electron and immunoelectron microscopic study of dengue-2 virus infection of cultured mosquito cells: maturation events. Arch Virol 92:273–291 [CrossRef]
    [Google Scholar]
  18. Hase T., Summers P. L., Eckels K. H., Putnak J. R. 1989; Morphogenesis of flaviviruses. Subcell Biochem 15:275–305
    [Google Scholar]
  19. Hase T., Dubois D. R., Summers P. L., Downs M. B., Ussery M. A. 1993; Comparison of replication rates and pathogenicities between the SA14 parent and SA14-14-2 vaccine strains of Japanese encephalitis virus in mouse brain neurons. Arch Virol 130:131–143 [CrossRef]
    [Google Scholar]
  20. Ho E. S. P., Somasundaram C., Ng M. L. 1987; Comparative ultrastructural studies of three flaviviruses in Vero cells. Trop Med 29:65–79
    [Google Scholar]
  21. Hoever G., Vogel J.-U., Lukashenko P., Hofmann W.-K., Komor M., Doerr H. W., Cinatl J. Jr 2005; Impact of persistent cytomegalovirus infection on human neuroblastoma cell gene expression. Biochem Biophys Res Commun 326:395–401 [CrossRef]
    [Google Scholar]
  22. Isaeva M. P., Leonova G. N., Kozhemiako V. B., Borisevich V. G., Maistrovskaia O. S., Rasskazov V. A. 1998; Apoptosis as a mechanism for the cytopathic action of tick-borne encephalitis virus. Vopr Virusol 43:182–186
    [Google Scholar]
  23. Jacobsen P. F., Jenkyn D. J., Papadimitriou J. M. 1985; Establishment of a human medulloblastoma cell line and its heterotransplantation into nude mice. J Neuropathol Exp Neurol 44:472–485 [CrossRef]
    [Google Scholar]
  24. Jordan I., Briese T., Fischer N., Lau J. Y., Lipkin W. I. 2000; Ribavirin inhibits West Nile virus replication and cytopathic effect in neural cells. J Infect Dis 182:1214–1217 [CrossRef]
    [Google Scholar]
  25. Kamalov N. I., Novozhilova A. P., Kreichman G. S., Sokolova E. D. 1998; The morphological characteristics of cell death in different forms of acute tick-borne encephalitis. Morfologiia 114:54–58
    [Google Scholar]
  26. Ko K. K., Igarashi A., Fukai K. 1979; Electron microscopic observations on Aedes albopictus cells infected with dengue viruses. Arch Virol 62:41–52 [CrossRef]
    [Google Scholar]
  27. Környey S. 1978; Contribution to the histology of tick-borne encephalitis. Acta Neuropathol 43:179–183 [CrossRef]
    [Google Scholar]
  28. Kožuch O., Mayer V. 1975; Pig kidney epithelial (PS) cells: a perfect tool for the study of flaviviruses and some other arboviruses. Acta Virol 19:498
    [Google Scholar]
  29. Leary K., Blair C. D. 1980; Sequential events in the morpohogenesis of Japanese encephalitis virus. J Ultrastruct Res 72:123–129 [CrossRef]
    [Google Scholar]
  30. Liao C. L., Lin Y. L., Wang J. J., Huang Y. L., Yeh C. T., Ma S. H., Chen L. K. 1997; Effect of enforced expression of human Bcl-2 on Japanese encephalitis virus-induced apoptosis in cultured cells. J Virol 71:5963–5971
    [Google Scholar]
  31. Liu Y., King N., Kesson A., Blanden R. V., Müllbacher A. 1988; West Nile virus infection modulates the expression of class I and class II MHC antigens on astrocytes in vitro . Ann N Y Acad Sci 540:483–485 [CrossRef]
    [Google Scholar]
  32. Luo M. H., Fortunato E. A. 2007; Long-term infection and shedding of human cytomegalovirus in T98G glioblastoma cells. J Virol 81:10424–10436 [CrossRef]
    [Google Scholar]
  33. Mackenzie J. M., Westaway E. G. 2001; Assembly and maturation of the flavivirus Kujin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J Virol 75:10787–10799 [CrossRef]
    [Google Scholar]
  34. Mackenzie J. M., Jones M. K., Westaway E. G. 1999; Markers for trans-Golgi membranes and the intermediate compartment localize to induced membranes with distinct replication functions in flavivirus-infected cells. J Virol 73:9555–9567
    [Google Scholar]
  35. Mackenzie J. M., Khromykh A. A., Westaway E. G. 2001; Stable expression of noncytopathic Kunjin replicons simulates both ultrastructural and biochemical characteristics observed during replication of Kunjin virus. Virology 279:161–172 [CrossRef]
    [Google Scholar]
  36. Marianneau P., Cardona A., Edelman L., Duebel V., Despres P. 1997; Dengue virus replication in human hepatoma cells activates NF- κ B which in turn induces apoptotic cell death. J Virol 71:3244–3249
    [Google Scholar]
  37. Matsumura T., Stollar V., Schlesinger R. W. 1971; Studies on the nature of dengue viruses – structure and development of dengue virus in Vero cells. Virology 46:344–355 [CrossRef]
    [Google Scholar]
  38. Ng M. L. 1987; Ultrastructural studies of Kujin virus-infected Aedes albopictus cells. J Gen Virol 68:577–582 [CrossRef]
    [Google Scholar]
  39. Ng M. L., Chu J. H. 2002; Interaction of West Nile and Kunjin viruses with cellular components during morphogenesis. Curr Top Microbiol Immunol 267:353–372
    [Google Scholar]
  40. Ng M. L., Hong S. S. 1989; Flavivirus infection: essential ultrastructural changes and association of Kunjin virus NS3 proteins with microtubules. Arch Virol 106:103–120 [CrossRef]
    [Google Scholar]
  41. Ng M. L., Howe J., Sreenivasan V., Mulders J. J. 1994a; Flavivirus West Nile (Sarafend) egress at the plasma membrane. Arch Virol 137:303–313 [CrossRef]
    [Google Scholar]
  42. Ng M. L., Yeong F. M., Tan S. H. 1994b; Cryosubstitution technique reveals new morphology of flavivirus-induced structures. J Virol Methods 49:305–314 [CrossRef]
    [Google Scholar]
  43. Ng M. L., Tan S. H., Chu J. J. 2001; Transport and budding at two distinct sites of visible nucleocapsids of West Nile (Sarafend) virus. J Med Virol 65:758–764 [CrossRef]
    [Google Scholar]
  44. Niedrig M., Klockmann U., Lang W., Roeder J., Burk S., Modrow S., Pauli G. 1994; Monoclonal antibodies directed against tick-borne encephalitis virus with neutralizing activity in vivo . Acta Virol 38:141–149
    [Google Scholar]
  45. Osetowska E., Wróblewska-Mularczyk Z. 1966; Neuropathology of the experimental tick-borne encephalitis II. Brain lesions in adult mice after peripheral infection and in suckling mice after peripheral and intracerebral infection. Pol Med J 5:1418–1435
    [Google Scholar]
  46. Pospíšil L., Jandásek L., Pešek J. 1954; Isolation of new strains of tick-borne encephalitis virus, Brno region, summer 1953. Lek List 9:3–5
    [Google Scholar]
  47. Růžek D., Bell-Sakyi L., Kopecký J., Grubhoffer L. 2008; Growth of tick-borne encephalitis virus (European subtype) in cell lines from vector and non-vector ticks. Virus Res 137:142–146 [CrossRef]
    [Google Scholar]
  48. Růžek D., Salát J., Palus M., Gritsun T. S., Gould E. A., Dyková I., Skallová A., Jelínek J., Kopecký J., Grubhoffer L. 2009; CD8+ T-cells mediate immunopathology in tick-borne encephalitis. Virology 384:1–6 [CrossRef]
    [Google Scholar]
  49. Schellinger P. D., Schmutzhard E., Fiebach J. B., Pfausler B., Maier H., Schwab S. 2000; Poliomyelitic-like illness in central European encephalitis. Neurology 55:299–302 [CrossRef]
    [Google Scholar]
  50. Seitelberger F., Jellinger K. 1966; Neuropathology of tick-borne encephalitis (with comparative studies of arbovirus encephalitis and of poliomyelitis. Neuropatol Pol 4:366–400
    [Google Scholar]
  51. Šenigl F., Grubhoffer L., Kopecký J. 2006; Differences in maturation of tick-borne encephalitis virus in mammalian and tick cell line. Intervirology 49:239–248 [CrossRef]
    [Google Scholar]
  52. Simon J., Slonim D., Zavadova H. 1966; Experimentelle Untersuchungen von klinischen und subklinischen Formen der Zeckenencephalitis an unterschiedlich empfänglichen Wirten: Mäusen, Hamstern und Affen. II. Hamster. . Acta Neuropathol 7:89–100 (in German [CrossRef]
    [Google Scholar]
  53. Simon J., Slonim D., Zavadova H. 1967; Experimentelle Untersuchungen von klinischen und subklinischen Formen der Zeckenencephalitis an unterschiedlich empfänglichen Wirten. III. Das histologische Bild der Zeckenencephalitis bei Affen. . Acta Neuropathol 8:35–46 (in German [CrossRef]
    [Google Scholar]
  54. Suri N. K., Banerjee K. 1995; Growth and cytopathic effect of Japanese encephalitis virus in astrocyte-enriched cell culture from neonatal mouse brains. Acta Virol 39:143–148
    [Google Scholar]
  55. Takegami T., Sakamuro D., Furukawa T. 1995; Japanese encephalitis virus nonstucture protein NS3 has RNA binding and ATPase activities. Virus Genes 9:105–112 [CrossRef]
    [Google Scholar]
  56. Thiel H.-J., Collett M. S., Gould E. A., Heinz F. X., Houghton M., Meyers G., Purcell R. H., Rice C. M. 2005; Family Flaviviridae . In Virus Taxonomy: Classification and Nomenclature, Eighth Report of the International Committee on the Taxonomy of Viruses pp 981–998Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. Amsterdam: Elsevier;
    [Google Scholar]
  57. Ubol S., Griffin D. E. 1991; Identification of a putative alphavirus receptor on mouse neural cells. J Virol 65:6913–6921
    [Google Scholar]
  58. Wang J.-J., Liao C.-L., Chiou Y.-W., Chiou C.-T., Huang Y.-L., Chen L.-K. 1997; Ultrastructure and localization of E proteins in cultured neuron cells infected with Japanese encephalitis virus. Virology 238:30–39 [CrossRef]
    [Google Scholar]
  59. Westaway E. G., Mackenzie J. M., Kenney M. T., Jones M. K., Khromykh A. A. 1997; Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structure. J Virol 71:6650–6661
    [Google Scholar]
  60. Yang K. D., Yeh W.-T., Chen R.-F., Chuon H.-L., Tsai H.-P., Yao C.-W., Shaio M.-F. 2004; A model to study neurotropism and persistency of Japanese encephalitis virus infection in human neuroblastoma cells and leukocytes. J Gen Virol 85:635–642 [CrossRef]
    [Google Scholar]
  61. Zhang P.-f., Klutch M., Muller J., Marcus-Secura C. J. 1993; St Louis encephalitis virus establishes a productive, cytopathic and persistent infection of Sf9 cells. J Gen Virol 74:1703–1708 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.010058-0
Loading
/content/journal/jgv/10.1099/vir.0.010058-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed