1887

Abstract

It has been shown previously that suppressive virus-specific FoxP3 regulatory CD8 T cells can be expanded from human peripheral blood mononuclear cells after antigen-specific stimulation. This study extended this finding by analysing the mechanisms of virus-specific FoxP3 regulatory CD8 T-cell generation during peptide-specific expansion . It was shown that hepatitis C virus (HCV)-, influenza virus (FLU)-, Epstein–Barr virus (EBV)- and cytomegalovirus (HCMV)-specific FoxP3 regulatory CD8 T cells could be expanded differentially from the blood of chronically HCV-infected patients following peptide-specific stimulation. The different ability of virus-specific CD8 T-cell populations to express FoxP3 after continuous antigen stimulation correlated significantly with the differentiation status. Indeed, CD27 CD28 CD57 HCV-, FLU- and EBV-specific CD8 T cells displayed a significantly higher ability to give rise to FoxP3 regulatory CD8 T cells compared with CD27 CD28 CD57 HCMV-specific CD8 T cells. Similar T-cell receptor expression patterns of FoxP3 versus FoxP3 CD8 T cells of the same antigen specificity indicated that both cell populations were probably expanded from the same virus-specific CD8 T-cell precursor. In addition, no specific antigen-presenting cell populations were required for the generation of FoxP3 CD8 T cells, as CD8-selected virus-specific FoxP3 CD8 T cells could be expanded by peptide presentation in the absence of antigen-presenting cells. Taken together, these results suggest that the ability to expand FoxP3 regulatory CD8 T cells from virus-specific CD8 T cells differs among distinct virus-specific CD8 T-cell populations depending on the differentiation status.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009837-0
2009-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/7/1692.html?itemId=/content/journal/jgv/10.1099/vir.0.009837-0&mimeType=html&fmt=ahah

References

  1. Accapezzato D., Francavilla V., Paroli M., Casciaro M., Chircu L. V., Cividini A., Abrignani S., Mondelli M. U., Barnaba V. 2004; Hepatic expansion of a virus-specific regulatory CD8+ T cell population in chronic hepatitis C virus infection. J Clin Invest 113:963–972 [CrossRef]
    [Google Scholar]
  2. Akbar A. N., Vukmanovic-Stejic M., Taams L. S., Macallan D. C. 2007; The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 7:231–237 [CrossRef]
    [Google Scholar]
  3. Alatrakchi N., Graham C. S., Van der Vliet J., Sherman K. E., Exley M. A., Koziel M. J. 2007; Hepatitis C virus (HCV)-specific CD8+ cells produce TGF- β that can suppress HCV-specific T-cell responses. J Virol 81:5882–5892 [CrossRef]
    [Google Scholar]
  4. Appay V., Rowland-Jones S. L. 2004; Lessons from the study of T-cell differentiation in persistent human virus infection. Semin Immunol 16:205–212 [CrossRef]
    [Google Scholar]
  5. Belkaid Y. 2007; Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol 7:875–888 [CrossRef]
    [Google Scholar]
  6. Bengsch B., Spangenberg H. C., Kersting N., Neumann-Haefelin C., Panther E., von Weizsacker F., Blum H. E., Pircher H., Thimme R. 2007; Analysis of CD127 and KLRG1 expression on hepatitis C virus-specific CD8+ T cells reveals the existence of different memory T-cell subsets in the peripheral blood and liver. J Virol 81:945–953 [CrossRef]
    [Google Scholar]
  7. Billerbeck E., Blum H. E., Thimme R. 2007; Parallel expansion of human virus-specific FoxP3 effector memory and de novo-generated FoxP3+ regulatory CD8+ T cells upon antigen recognition in vitro. J Immunol 179:1039–1048 [CrossRef]
    [Google Scholar]
  8. Brenchley J. M., Paiardini M., Knox K. S., Asher A. I., Cervasi B., Asher T. E., Scheinberg P., Price D. A., Hage C. A. other authors 2008; Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112:2826–2835 [CrossRef]
    [Google Scholar]
  9. Campbell D. J., Ziegler S. F. 2007; FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 7:305–310 [CrossRef]
    [Google Scholar]
  10. Ebinuma H., Nakamoto N., Li Y., Price D. A., Gostick E., Levine B. L., Tobias J., Kwok W. W., Chang K. M. 2008; Identification and in vitro expansion of functional antigen-specific CD25+ FoxP3+ regulatory T cells in hepatitis C virus infection. J Virol 82:5043–5053 [CrossRef]
    [Google Scholar]
  11. Garba M. L., Pilcher C. D., Bingham A. L., Eron J., Frelinger J. A. 2002; HIV antigens can induce TGF- β 1-producing immunoregulatory CD8+ T cells. J Immunol 168:2247–2254 [CrossRef]
    [Google Scholar]
  12. Gavin M. A., Torgerson T. R., Houston E., DeRoos P., Ho W. Y., Stray-Pedersen A., Ocheltree E. L., Greenberg P. D., Ochs H. D., Rudensky A. Y. 2006; Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A 103:6659–6664 [CrossRef]
    [Google Scholar]
  13. Gillespie G. M., Wills M. R., Appay V., O'Callaghan C., Murphy M., Smith N., Sissons P., Rowland-Jones S., Bell J. I., Moss P. A. 2000; Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8+ T lymphocytes in healthy seropositive donors. J Virol 74:8140–8150 [CrossRef]
    [Google Scholar]
  14. Hislop A. D., Taylor G. S., Sauce D., Rickinson A. B. 2007; Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu Rev Immunol 25:587–617 [CrossRef]
    [Google Scholar]
  15. Joshi N. S., Kaech S. M. 2008; Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J Immunol 180:1309–1315 [CrossRef]
    [Google Scholar]
  16. Li S., Gowans E. J., Chougnet C., Plebanski M., Dittmer U. 2008; Natural regulatory T cells and persistent viral infection. J Virol 82:21–30 [CrossRef]
    [Google Scholar]
  17. Mahic M., Henjum K., Yaqub S., Bjornbeth B. A., Torgersen K. M., Tasken K., Aandahl E. M. 2008; Generation of highly suppressive adaptive CD8+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. Eur J Immunol 38:640–646 [CrossRef]
    [Google Scholar]
  18. Malleret B., Maneglier B., Karlsson I., Lebon P., Nascimbeni M., Perie L., Brochard P., Delache B., Calvo J. other authors 2008; Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I IFN, and immune suppression. Blood 112:4598–4608 [CrossRef]
    [Google Scholar]
  19. Radziewicz H., Ibegbu C. C., Fernandez M. L., Workowski K. A., Obideen K., Wehbi M., Hanson H. L., Steinberg J. P., Masopust D. other authors 2007; Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J Virol 81:2545–2553 [CrossRef]
    [Google Scholar]
  20. Roncarolo M. G., Gregori S. 2008; Is FOXP3 a bona fide marker for human regulatory T cells?. Eur J Immunol 38:925–927 [CrossRef]
    [Google Scholar]
  21. Rufer N., Zippelius A., Batard P., Pittet M. J., Kurth I., Corthesy P., Cerottini J. C., Leyvraz S., Roosnek E. other authors 2003; Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 102:1779–1787 [CrossRef]
    [Google Scholar]
  22. Shevach E. M. 2006; From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 25:195–201 [CrossRef]
    [Google Scholar]
  23. Tang Q., Bluestone J. A. 2008; The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9:239–244 [CrossRef]
    [Google Scholar]
  24. Tran D. Q., Ramsey H., Shevach E. M. 2007; Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor- β dependent but does not confer a regulatory phenotype. Blood 110:2983–2990 [CrossRef]
    [Google Scholar]
  25. van Leeuwen E. M., de Bree G. J., Remmerswaal E. B., Yong S. L., Tesselaar K., ten Berge I. J., van Lier R. A. 2005; IL-7 receptor alpha chain expression distinguishes functional subsets of virus-specific human CD8+ T cells. Blood 106:2091–2098 [CrossRef]
    [Google Scholar]
  26. Wang J., Ioan-Facsinay A., van der Voort E. I., Huizinga T. W., Toes R. E. 2007; Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37:129–138 [CrossRef]
    [Google Scholar]
  27. Wherry E. J., Ahmed R. 2004; Memory CD8 T-cell differentiation during viral infection. J Virol 78:5535–5545 [CrossRef]
    [Google Scholar]
  28. Wherry E. J., Teichgraber V., Becker T. C., Masopust D., Kaech S. M., Antia R., von Andrian U. H., Ahmed R. 2003; Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4:225–234
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009837-0
Loading
/content/journal/jgv/10.1099/vir.0.009837-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error