1887

Abstract

It has been shown previously that suppressive virus-specific FoxP3 regulatory CD8 T cells can be expanded from human peripheral blood mononuclear cells after antigen-specific stimulation. This study extended this finding by analysing the mechanisms of virus-specific FoxP3 regulatory CD8 T-cell generation during peptide-specific expansion . It was shown that hepatitis C virus (HCV)-, influenza virus (FLU)-, Epstein–Barr virus (EBV)- and cytomegalovirus (HCMV)-specific FoxP3 regulatory CD8 T cells could be expanded differentially from the blood of chronically HCV-infected patients following peptide-specific stimulation. The different ability of virus-specific CD8 T-cell populations to express FoxP3 after continuous antigen stimulation correlated significantly with the differentiation status. Indeed, CD27 CD28 CD57 HCV-, FLU- and EBV-specific CD8 T cells displayed a significantly higher ability to give rise to FoxP3 regulatory CD8 T cells compared with CD27 CD28 CD57 HCMV-specific CD8 T cells. Similar T-cell receptor expression patterns of FoxP3 versus FoxP3 CD8 T cells of the same antigen specificity indicated that both cell populations were probably expanded from the same virus-specific CD8 T-cell precursor. In addition, no specific antigen-presenting cell populations were required for the generation of FoxP3 CD8 T cells, as CD8-selected virus-specific FoxP3 CD8 T cells could be expanded by peptide presentation in the absence of antigen-presenting cells. Taken together, these results suggest that the ability to expand FoxP3 regulatory CD8 T cells from virus-specific CD8 T cells differs among distinct virus-specific CD8 T-cell populations depending on the differentiation status.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009837-0
2009-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/7/1692.html?itemId=/content/journal/jgv/10.1099/vir.0.009837-0&mimeType=html&fmt=ahah

References

  1. Accapezzato, D., Francavilla, V., Paroli, M., Casciaro, M., Chircu, L. V., Cividini, A., Abrignani, S., Mondelli, M. U. & Barnaba, V. ( 2004; ). Hepatic expansion of a virus-specific regulatory CD8+ T cell population in chronic hepatitis C virus infection. J Clin Invest 113, 963–972.[CrossRef]
    [Google Scholar]
  2. Akbar, A. N., Vukmanovic-Stejic, M., Taams, L. S. & Macallan, D. C. ( 2007; ). The dynamic co-evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 7, 231–237.[CrossRef]
    [Google Scholar]
  3. Alatrakchi, N., Graham, C. S., Van der Vliet, J., Sherman, K. E., Exley, M. A. & Koziel, M. J. ( 2007; ). Hepatitis C virus (HCV)-specific CD8+ cells produce TGF-β that can suppress HCV-specific T-cell responses. J Virol 81, 5882–5892.[CrossRef]
    [Google Scholar]
  4. Appay, V. & Rowland-Jones, S. L. ( 2004; ). Lessons from the study of T-cell differentiation in persistent human virus infection. Semin Immunol 16, 205–212.[CrossRef]
    [Google Scholar]
  5. Belkaid, Y. ( 2007; ). Regulatory T cells and infection: a dangerous necessity. Nat Rev Immunol 7, 875–888.[CrossRef]
    [Google Scholar]
  6. Bengsch, B., Spangenberg, H. C., Kersting, N., Neumann-Haefelin, C., Panther, E., von Weizsacker, F., Blum, H. E., Pircher, H. & Thimme, R. ( 2007; ). Analysis of CD127 and KLRG1 expression on hepatitis C virus-specific CD8+ T cells reveals the existence of different memory T-cell subsets in the peripheral blood and liver. J Virol 81, 945–953.[CrossRef]
    [Google Scholar]
  7. Billerbeck, E., Blum, H. E. & Thimme, R. ( 2007; ). Parallel expansion of human virus-specific FoxP3 effector memory and de novo-generated FoxP3+ regulatory CD8+ T cells upon antigen recognition in vitro. J Immunol 179, 1039–1048.[CrossRef]
    [Google Scholar]
  8. Brenchley, J. M., Paiardini, M., Knox, K. S., Asher, A. I., Cervasi, B., Asher, T. E., Scheinberg, P., Price, D. A., Hage, C. A. & other authors ( 2008; ). Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood 112, 2826–2835.[CrossRef]
    [Google Scholar]
  9. Campbell, D. J. & Ziegler, S. F. ( 2007; ). FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 7, 305–310.[CrossRef]
    [Google Scholar]
  10. Ebinuma, H., Nakamoto, N., Li, Y., Price, D. A., Gostick, E., Levine, B. L., Tobias, J., Kwok, W. W. & Chang, K. M. ( 2008; ). Identification and in vitro expansion of functional antigen-specific CD25+ FoxP3+ regulatory T cells in hepatitis C virus infection. J Virol 82, 5043–5053.[CrossRef]
    [Google Scholar]
  11. Garba, M. L., Pilcher, C. D., Bingham, A. L., Eron, J. & Frelinger, J. A. ( 2002; ). HIV antigens can induce TGF-β 1-producing immunoregulatory CD8+ T cells. J Immunol 168, 2247–2254.[CrossRef]
    [Google Scholar]
  12. Gavin, M. A., Torgerson, T. R., Houston, E., DeRoos, P., Ho, W. Y., Stray-Pedersen, A., Ocheltree, E. L., Greenberg, P. D., Ochs, H. D. & Rudensky, A. Y. ( 2006; ). Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A 103, 6659–6664.[CrossRef]
    [Google Scholar]
  13. Gillespie, G. M., Wills, M. R., Appay, V., O'Callaghan, C., Murphy, M., Smith, N., Sissons, P., Rowland-Jones, S., Bell, J. I. & Moss, P. A. ( 2000; ). Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8+ T lymphocytes in healthy seropositive donors. J Virol 74, 8140–8150.[CrossRef]
    [Google Scholar]
  14. Hislop, A. D., Taylor, G. S., Sauce, D. & Rickinson, A. B. ( 2007; ). Cellular responses to viral infection in humans: lessons from Epstein–Barr virus. Annu Rev Immunol 25, 587–617.[CrossRef]
    [Google Scholar]
  15. Joshi, N. S. & Kaech, S. M. ( 2008; ). Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J Immunol 180, 1309–1315.[CrossRef]
    [Google Scholar]
  16. Li, S., Gowans, E. J., Chougnet, C., Plebanski, M. & Dittmer, U. ( 2008; ). Natural regulatory T cells and persistent viral infection. J Virol 82, 21–30.[CrossRef]
    [Google Scholar]
  17. Mahic, M., Henjum, K., Yaqub, S., Bjornbeth, B. A., Torgersen, K. M., Tasken, K. & Aandahl, E. M. ( 2008; ). Generation of highly suppressive adaptive CD8+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation. Eur J Immunol 38, 640–646.[CrossRef]
    [Google Scholar]
  18. Malleret, B., Maneglier, B., Karlsson, I., Lebon, P., Nascimbeni, M., Perie, L., Brochard, P., Delache, B., Calvo, J. & other authors ( 2008; ). Primary infection with simian immunodeficiency virus: plasmacytoid dendritic cell homing to lymph nodes, type I IFN, and immune suppression. Blood 112, 4598–4608.[CrossRef]
    [Google Scholar]
  19. Radziewicz, H., Ibegbu, C. C., Fernandez, M. L., Workowski, K. A., Obideen, K., Wehbi, M., Hanson, H. L., Steinberg, J. P., Masopust, D. & other authors ( 2007; ). Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. J Virol 81, 2545–2553.[CrossRef]
    [Google Scholar]
  20. Roncarolo, M. G. & Gregori, S. ( 2008; ). Is FOXP3 a bona fide marker for human regulatory T cells? Eur J Immunol 38, 925–927.[CrossRef]
    [Google Scholar]
  21. Rufer, N., Zippelius, A., Batard, P., Pittet, M. J., Kurth, I., Corthesy, P., Cerottini, J. C., Leyvraz, S., Roosnek, E. & other authors ( 2003; ). Ex vivo characterization of human CD8+ T subsets with distinct replicative history and partial effector functions. Blood 102, 1779–1787.[CrossRef]
    [Google Scholar]
  22. Shevach, E. M. ( 2006; ). From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 25, 195–201.[CrossRef]
    [Google Scholar]
  23. Tang, Q. & Bluestone, J. A. ( 2008; ). The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9, 239–244.[CrossRef]
    [Google Scholar]
  24. Tran, D. Q., Ramsey, H. & Shevach, E. M. ( 2007; ). Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-β dependent but does not confer a regulatory phenotype. Blood 110, 2983–2990.[CrossRef]
    [Google Scholar]
  25. van Leeuwen, E. M., de Bree, G. J., Remmerswaal, E. B., Yong, S. L., Tesselaar, K., ten Berge, I. J. & van Lier, R. A. ( 2005; ). IL-7 receptor alpha chain expression distinguishes functional subsets of virus-specific human CD8+ T cells. Blood 106, 2091–2098.[CrossRef]
    [Google Scholar]
  26. Wang, J., Ioan-Facsinay, A., van der Voort, E. I., Huizinga, T. W. & Toes, R. E. ( 2007; ). Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol 37, 129–138.[CrossRef]
    [Google Scholar]
  27. Wherry, E. J. & Ahmed, R. ( 2004; ). Memory CD8 T-cell differentiation during viral infection. J Virol 78, 5535–5545.[CrossRef]
    [Google Scholar]
  28. Wherry, E. J., Teichgraber, V., Becker, T. C., Masopust, D., Kaech, S. M., Antia, R., von Andrian, U. H. & Ahmed, R. ( 2003; ). Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4, 225–234.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009837-0
Loading
/content/journal/jgv/10.1099/vir.0.009837-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error