1887

Abstract

The surface proteins S of severe acute respiratory syndrome coronavirus (SARS-CoV) and transmissible gastroenteritis virus (TGEV) were compared for their ability to mediate infection of viral pseudotypes based on vesicular stomatitis virus (VSV). The cell tropism of the respective pseudotypes corresponded to the tropism of the viruses from which the S protein was derived. Higher infectivity values were obtained with the SARS-CoV S protein than with the TGEV S protein. Differences were observed with respect to the importance of the cytoplasmic tail and the membrane anchor of the S proteins. In the case of the SARS-CoV S protein, truncation of the cytoplasmic tail resulted in increased infectivity. For the TGEV S protein, the inactivation of an intracellular retention signal in the cytoplasmic tail was required. Exchange of the membrane anchor of the S proteins led to a low infection efficiency. Our results indicate that related glycoproteins may show substantial differences in their ability to mediate pseudotype infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009704-0
2009-07-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/7/1724.html?itemId=/content/journal/jgv/10.1099/vir.0.009704-0&mimeType=html&fmt=ahah

References

  1. Broer R., Boson B., Spaan W., Cosset F. L., Corver J. 2006; Important role for the transmembrane domain of severe acute respiratory syndrome coronavirus spike protein during entry. J Virol 80:1302–1310 [CrossRef]
    [Google Scholar]
  2. Chan S. Y., Speck R. F., Ma M. C., Goldsmith M. A. 2000; Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol 74:4933–4937 [CrossRef]
    [Google Scholar]
  3. Delmas B., Gelfi J., L'Haridon R., Vogel L. K., Sjostrom H., Noren O., Laude H. 1992; Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357:417–420 [CrossRef]
    [Google Scholar]
  4. Fukushi S., Mizutani T., Saijo M., Matsuyama S., Miyajima N., Taguchi F., Itamura S., Kurane I., Morikawa S. 2005; Vesicular stomatitis virus pseudotyped with severe acute respiratory syndrome coronavirus spike protein. J Gen Virol 86:2269–2274 [CrossRef]
    [Google Scholar]
  5. Gebauer F., Posthumus W. P., Correa I., Sune C., Smerdou C., Sanchez C. M., Lenstra J. A., Meloen R. H., Enjuanes L. 1991; Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology 183:225–238 [CrossRef]
    [Google Scholar]
  6. Giroglou T., Cinatl J. Jr, Rabenau H., Drosten C., Schwalbe H., Doerr H. W., von Laer D. 2004; Retroviral vectors pseudotyped with severe acute respiratory syndrome coronavirus S protein. J Virol 78:9007–9015 [CrossRef]
    [Google Scholar]
  7. Glende J., Schwegmann-Wessels C., Al Falah M., Pfefferle S., Qu X., Deng H., Drosten C., Naim H. Y., Herrler G. 2008; Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology 381:215–221 [CrossRef]
    [Google Scholar]
  8. Hanika A., Larisch B., Steinmann E., Schwegmann-Wessels C., Herrler G., Zimmer G. 2005; Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. J Gen Virol 86:1455–1465 [CrossRef]
    [Google Scholar]
  9. Hsu M., Zhang J., Flint M., Logvinoff C., Cheng-Mayer C., Rice C. M., McKeating J. A. 2003; Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 100:7271–7276 [CrossRef]
    [Google Scholar]
  10. Krempl C., Schultze B., Laude H., Herrler G. 1997; Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol 71:3285–3287
    [Google Scholar]
  11. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K. other authors 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef]
    [Google Scholar]
  12. Matsuura Y., Tani H., Suzuki K., Kimura-Someya T., Suzuki R., Aizaki H., Ishii K., Moriishi K., Robison C. S. other authors 2001; Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286:263–275 [CrossRef]
    [Google Scholar]
  13. Ren X., Glende J., Al Falah M., de Vries V., Schwegmann-Wessels C., Qu X., Tan L., Tschernig T., Deng H. other authors 2006; Analysis of ACE2 in polarized epithelial cells: surface expression and function as receptor for severe acute respiratory syndrome-associated coronavirus. J Gen Virol 87:1691–1695 [CrossRef]
    [Google Scholar]
  14. Ronecker S., Zimmer G., Herrler G., Greiser-Wilke I., Grummer B. 2008; Formation of bovine viral diarrhea virus E1–E2 heterodimers is essential for virus entry and depends on charged residues in the transmembrane domains. J Gen Virol 89:2114–2121 [CrossRef]
    [Google Scholar]
  15. Schwegmann-Weßels C., Zimmer G., Laude H., Enjuanes L., Herrler G. 2002; Binding of transmissible gastroenteritis coronavirus to cell surface sialoglycoproteins. J Virol 76:6037–6043 [CrossRef]
    [Google Scholar]
  16. Schwegmann-Weßels C., Zimmer G., Schröder B., Breves G., Herrler G. 2003; Binding of transmissible gastroenteritis coronavirus to brush border membrane sialoglycoproteins. J Virol 77:11846–11848 [CrossRef]
    [Google Scholar]
  17. Schwegmann-Weßels C., Al Falah M., Escors D., Wang Z., Zimmer G., Deng H., Enjuanes L., Naim H. Y., Herrler G. 2004; A novel sorting signal for intracellular localization is present in the S protein of a porcine coronavirus but absent from severe acute respiratory syndrome-associated coronavirus. J Biol Chem 279:43661–43666 [CrossRef]
    [Google Scholar]
  18. Schwegmann-Weßels C., Ren X., Herrler G. 2006; Intracellular transport of the S proteins of coronaviruses. Adv Exp Med Biol 581:271–275
    [Google Scholar]
  19. Simmons G., Reeves J. D., Rennekamp A. J., Amberg S. M., Piefer A. J., Bates P. 2004; Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 101:4240–4245 [CrossRef]
    [Google Scholar]
  20. Takada A., Robison C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y. 1997; A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94:14764–14769 [CrossRef]
    [Google Scholar]
  21. Wang Z., Nie Y., Wang P., Ding M., Deng H. 2004a; Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry. Virology 330:332–341 [CrossRef]
    [Google Scholar]
  22. Wang P., Chen J., Zheng A., Nie Y., Shi X., Wang W., Wang G., Luo M., Liu H. other authors 2004b; Expression cloning of functional receptor used by SARS coronavirus. Biochem Biophys Res Commun 315:439–444 [CrossRef]
    [Google Scholar]
  23. Watanabe R., Matsyama S., Shirato K., Maejima M., Fukushi S., Morikawa S., Taguchi F. 2008; Entry from cell surface of SARS coronavirus with cleaved S protein as revealed by pseudotype virus bearing cleaved S protein. J Virol 82:11985–11991 [CrossRef]
    [Google Scholar]
  24. Yang C., Compans R. W. 1996; Analysis of the cell fusion activities of chimeric simian immunodeficiency virus-murine leukemia virus envelope proteins: inhibitory effects of the R peptide. J Virol 70:248–254
    [Google Scholar]
  25. Zimmer G., Trotz I., Herrler G. 2001; N-glycans of F protein differentially affect fusion activity of human respiratory syncytial virus. J Virol 75:4744–4751 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009704-0
Loading
/content/journal/jgv/10.1099/vir.0.009704-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error