1887

Abstract

Human metapneumovirus (HMPV) and avian metapneumovirus subgroup C (AMPV-C) infect humans and birds, respectively. This study confirmed the difference in host range in turkey poults, and analysed the contribution of the individual metapneumovirus genes to host range in an cell-culture model. Mammalian Vero-118 cells supported replication of both HMPV and AMPV-C in contrast to avian quail fibroblast (QT6) cells in which only AMPV-C replicated to high titres. Inoculation of Vero-118 and QT6 cells with recombinant HMPV in which genes were exchanged with those of AMPV-C revealed that the metapneumovirus fusion (F) protein is the main determinant for host tropism. Chimeric viruses in which polymerase complex proteins were exchanged between HMPV and AMPV-C replicated less efficiently compared with HMPV in QT6 cells. Using mini-genome systems, it was shown that exchanging these polymerase proteins resulted in reduced replication and transcription efficiency in QT6 cells. Examination of infected Vero-118 and QT6 cells revealed that viruses containing the F protein of AMPV-C yielded larger syncytia compared with viruses containing the HMPV F protein. Cell-content mixing assays revealed that the F protein of AMPV-C was more fusogenic compared with the F protein of HMPV, and that the F2 region is responsible for the difference observed between AMPV-C and HMPV F-promoted fusion in QT6 and Vero-118 cells. This study provides insight into the determinants of host tropism and membrane fusion of metapneumoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009688-0
2009-06-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/6/1408.html?itemId=/content/journal/jgv/10.1099/vir.0.009688-0&mimeType=html&fmt=ahah

References

  1. Bayon-Auboyer, M. H., Jestin, V., Toquin, D., Cherbonnel, M. & Eterradossi, N. ( 1999; ). Comparison of F-, G- and N-based RT-PCR protocols with conventional virological procedures for the detection and typing of turkey rhinotracheitis virus. Arch Virol 144, 1091–1109.[CrossRef]
    [Google Scholar]
  2. Biacchesi, S., Skiadopoulos, M. H., Yang, L., Lamirande, E. W., Tran, K. C., Murphy, B. R., Collins, P. L. & Buchholz, U. J. ( 2004; ). Recombinant human metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: deletion of G yields a promising vaccine candidate. J Virol 78, 12877–12887.[CrossRef]
    [Google Scholar]
  3. Biacchesi, S., Pham, Q. N., Skiadopoulos, M. H., Murphy, B. R., Collins, P. L. & Buchholz, U. J. ( 2005; ). Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. J Virol 79, 12608–12613.[CrossRef]
    [Google Scholar]
  4. Buchholz, U. J., Finke, S. & Conzelmann, K. K. ( 1999; ). Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73, 251–259.
    [Google Scholar]
  5. Cook, J. K. ( 2000; ). Avian rhinotracheitis. Rev Sci Tech 19, 602–613.
    [Google Scholar]
  6. Crowe, J. E., Jr ( 2004; ). Human metapneumovirus as a major cause of human respiratory tract disease. Pediatr Infect Dis J 23, S215–S221.[CrossRef]
    [Google Scholar]
  7. de Graaf, M., Herfst, S., Schrauwen, E. J., Choi, Y., van den Hoogen, B. G., Osterhaus, A. D. & Fouchier, R. A. ( 2008a; ). Specificity and functional interaction of the polymerase complex proteins of human and avian metapneumoviruses. J Gen Virol 89, 975–983.[CrossRef]
    [Google Scholar]
  8. de Graaf, M., Osterhaus, A. D. M. E., Fouchier, R. A. M. & Holmes, E. C. ( 2008b; ). Evolutionary dynamics of human and avian metapneumoviruses. J Gen Virol 89, 2933–2942.[CrossRef]
    [Google Scholar]
  9. Eterradossi, N., Toquin, D., Guittet, M. & Bennejean, G. ( 1995; ). Evaluation of different turkey rhinotracheitis viruses used as antigens for serological testing following live vaccination and challenge. Zentralbl Veterinarmed B 42, 175–186.
    [Google Scholar]
  10. Falsey, A. R., Erdman, D., Anderson, L. J. & Walsh, E. E. ( 2003; ). Human metapneumovirus infections in young and elderly adults. J Infect Dis 187, 785–790.[CrossRef]
    [Google Scholar]
  11. Govindarajan, D. & Samal, S. K. ( 2004; ). Sequence analysis of the large polymerase (L) protein of the US strain of avian metapneumovirus indicates a close resemblance to that of the human metapneumovirus. Virus Res 105, 59–66.[CrossRef]
    [Google Scholar]
  12. Govindarajan, D. & Samal, S. K. ( 2005; ). Analysis of the complete genome sequence of avian metapneumovirus subgroup C indicates that it possesses the longest genome among metapneumoviruses. Virus Genes 30, 331–333.[CrossRef]
    [Google Scholar]
  13. Govindarajan, D., Yunus, A. S. & Samal, S. K. ( 2004; ). Complete sequence of the G glycoprotein gene of avian metapneumovirus subgroup C and identification of a divergent domain in the predicted protein. J Gen Virol 85, 3671–3675.[CrossRef]
    [Google Scholar]
  14. Govindarajan, D., Buchholz, U. J. & Samal, S. K. ( 2006; ). Recovery of avian metapneumovirus subgroup C from cDNA: cross-recognition of avian and human metapneumovirus support proteins. J Virol 80, 5790–5797.[CrossRef]
    [Google Scholar]
  15. Gruters, R. A., Otto, S. A., Al, B. J., Verhoeven, A. J., Verweij, C. L., Van Lier, R. A. & Miedema, F. ( 1991; ). Non-mitogenic T cell activation signals are sufficient for induction of human immunodeficiency virus transcription. Eur J Immunol 21, 167–172.[CrossRef]
    [Google Scholar]
  16. Hallak, L. K., Collins, P. L., Knudson, W. & Peeples, M. E. ( 2000a; ). Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection. Virology 271, 264–275.[CrossRef]
    [Google Scholar]
  17. Hallak, L. K., Spillmann, D., Collins, P. L. & Peeples, M. E. ( 2000b; ). Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 74, 10508–10513.[CrossRef]
    [Google Scholar]
  18. Herfst, S., de Graaf, M., Schickli, J. H., Tang, R. S., Kaur, J., Yang, C. F., Spaete, R. R., Haller, A. A., van den Hoogen, B. G. & other authors ( 2004; ). Recovery of human metapneumovirus genetic lineages A and B from cloned cDNA. J Virol 78, 8264–8270.[CrossRef]
    [Google Scholar]
  19. Herfst, S., Mas, V., Ver, L. S., Wierda, R. J., Osterhaus, A. D., Fouchier, R. A. & Melero, J. A. ( 2008; ). Low pH induced membrane fusion mediated by human metapneumoviruses F protein is a rare, strain dependent phenomenon. J Virol 82, 8891–8895.[CrossRef]
    [Google Scholar]
  20. Jirjis, F. F., Noll, S. L., Halvorson, D. A., Nagaraja, K. V. & Shaw, D. P. ( 2002; ). Pathogenesis of avian pneumovirus infection in turkeys. Vet Pathol 39, 300–310.[CrossRef]
    [Google Scholar]
  21. Jirjis, F. F., Noll, S. L., Halvorson, D. A., Nagaraja, K. V., Martin, F. & Shaw, D. P. ( 2004; ). Effects of bacterial coinfection on the pathogenesis of avian pneumovirus infection in turkeys. Avian Dis 48, 34–49.[CrossRef]
    [Google Scholar]
  22. Juhasz, K. & Easton, A. J. ( 1994; ). Extensive sequence variation in the attachment (G) protein gene of avian pneumovirus: evidence for two distinct subgroups. J Gen Virol 75, 2873–2880.[CrossRef]
    [Google Scholar]
  23. Krusat, T. & Streckert, H. J. ( 1997; ). Heparin-dependent attachment of respiratory syncytial virus (RSV) to host cells. Arch Virol 142, 1247–1254.[CrossRef]
    [Google Scholar]
  24. Kuiken, T., Van Den Hoogen, B. G., Van Riel, D. A., Laman, J. D., Van Amerongen, G., Sprong, L., Fouchier, R. A. & Osterhaus, A. D. ( 2004; ). Experimental human metapneumovirus infection of cynomolgus macaques (Macaca fascicularis) results in virus replication in ciliated epithelial cells and pneumocytes with associated lesions throughout the respiratory tract. Am J Pathol 164, 1893–1900.[CrossRef]
    [Google Scholar]
  25. Lamb, R. A., Paterson, R. G. & Jardetzky, T. S. ( 2006; ). Paramyxovirus membrane fusion: lessons from the F and HN atomic structures. Virology 344, 30–37.[CrossRef]
    [Google Scholar]
  26. Maertzdorf, J., Wang, C. K., Brown, J. B., Quinto, J. D., Chu, M., De Graaf, M., Van Den Hoogen, B. G., Spaete, R., Osterhaus, A. D. & Fouchier, R. A. ( 2004; ). Real-time reverse transcriptase PCR assay for detection of human metapneumoviruses from all known genetic lineages. J Clin Microbiol 42, 981–986.[CrossRef]
    [Google Scholar]
  27. Naylor, C. J., Brown, P. A., Edworthy, N., Ling, R., Jones, R. C., Savage, C. E. & Easton, A. J. ( 2004; ). Development of a reverse-genetics system for Avian pneumovirus demonstrates that the small hydrophobic (SH) and attachment (G) genes are not essential for virus viability. J Gen Virol 85, 3219–3227.[CrossRef]
    [Google Scholar]
  28. Pham, Q. N., Biacchesi, S., Skiadopoulos, M. H., Murphy, B. R., Collins, P. L. & Buchholz, U. J. ( 2005; ). Chimeric recombinant human metapneumoviruses with the nucleoprotein or phosphoprotein open reading frame replaced by that of avian metapneumovirus exhibit improved growth in vitro and attenuation in vivo. J Virol 79, 15114–15122.[CrossRef]
    [Google Scholar]
  29. Rawling, J., García-Barreno, B. & Melero, J. A. ( 2008; ). Insertion of the two cleavage sites of the respiratory syncytial virus fusion protein in Sendai virus fusion protein leads to enhanced cell–cell fusion and a decreased dependency on the HN attachment protein for activity. J Virol 82, 5986–5998.[CrossRef]
    [Google Scholar]
  30. Reed, L. J. & Muench, H. ( 1938; ). A simple method of estimating fifty percent end points. Am J Epidemiol 27, 493–497.
    [Google Scholar]
  31. Russell, C. J., Jardetzky, T. S. & Lamb, R. A. ( 2001; ). Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. EMBO J 20, 4024–4034.[CrossRef]
    [Google Scholar]
  32. Schlender, J., Zimmer, G., Herrler, G. & Conzelmann, K. K. ( 2003; ). Respiratory syncytial virus (RSV) fusion protein subunit F2, not attachment protein G, determines the specificity of RSV infection. J Virol 77, 4609–4616.[CrossRef]
    [Google Scholar]
  33. Schowalter, R. M., Smith, S. E. & Dutch, R. E. ( 2006; ). Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH. J Virol 80, 10931–10941.[CrossRef]
    [Google Scholar]
  34. Seal, B. S. ( 1998; ). Matrix protein gene nucleotide and predicted amino acid sequence demonstrate that the first US avian pneumovirus isolate is distinct from European strains. Virus Res 58, 45–52.[CrossRef]
    [Google Scholar]
  35. Teng, M. N., Whitehead, S. S. & Collins, P. L. ( 2001; ). Contribution of the respiratory syncytial virus G glycoprotein and its secreted and membrane-bound forms to virus replication in vitro and in vivo. Virology 289, 283–296.[CrossRef]
    [Google Scholar]
  36. Tiwari, A., Patnayak, D. P., Chander, Y. & Goyal, S. M. ( 2006; ). Permissibility of different cell types for the growth of avian metapneumovirus. J Virol Methods 138, 80–84.[CrossRef]
    [Google Scholar]
  37. van den Hoogen, B. G., de Jong, J. C., Groen, J., Kuiken, T., de Groot, R., Fouchier, R. A. & Osterhaus, A. D. ( 2001; ). A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 7, 719–724.[CrossRef]
    [Google Scholar]
  38. van den Hoogen, B. G., van Doornum, G. J. J., Fockens, J. C., Cornelissen, J. J., Beyer, W. E. P., de Groot, R., Osterhaus, A. D. M. E. & Fouchier, R. A. M. ( 2003; ). Prevalence and clinical symptoms of human metapneumovirus infection in hospitalized patients. J Infect Dis 188, 1571–1577.[CrossRef]
    [Google Scholar]
  39. van den Hoogen, B. G., Herfst, S., de Graaf, M., Sprong, L., van Lavieren, R., van Amerongen, G., Yuksel, S., Fouchier, R. A., Osterhaus, A. D. & de Swart, R. L. ( 2007; ). Experimental infection of macaques with human metapneumovirus induces transient protective immunity. J Gen Virol 88, 1251–1259.[CrossRef]
    [Google Scholar]
  40. Velayudhan, B. T., McComb, B., Bennett, R. S., Lopes, V. C., Shaw, D., Halvorson, D. A. & Nagaraja, K. V. ( 2005; ). Emergence of a virulent type C avian metapneumovirus in turkeys in Minnesota. Avian Dis 49, 520–526.[CrossRef]
    [Google Scholar]
  41. Velayudhan, B. T., Nagaraja, K. V., Thachil, A. J., Shaw, D. P., Gray, G. C. & Halvorson, D. A. ( 2006; ). Human metapneumovirus in turkey poults. Emerg Infect Dis 12, 1853–1859.[CrossRef]
    [Google Scholar]
  42. Williams, J. V., Wang, C. K., Yang, C. F., Tollefson, S. J., House, F. S., Heck, J. M., Chu, M., Brown, J. B., Lintao, L. D. & other authors ( 2006; ). The role of human metapneumovirus in upper respiratory tract infections in children: a 20-year experience. J Infect Dis 193, 387–395.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009688-0
Loading
/content/journal/jgv/10.1099/vir.0.009688-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error