1887

Abstract

The anti-lipopolysaccharide factor (ALF) from the black tiger shrimp, , has been shown previously to exhibit a broad spectrum of activity against various strains of bacteria and fungi. Herein, the recombinant ALF3 (rALF3) protein was examined for its role in the defence against white spot syndrome virus (WSSV) infection in haematopoietic (Hpt) cell cultures of the freshwater crayfish, , as well as in live shrimps. Incubation of Hpt cell cultures with a mixture of WSSV and rALF3 resulted in a dose-dependent decrease in VP28 gene expression levels, compared with those incubated with WSSV alone, with an rALF3 IC value lower than 2.5 μM. However, pre-treatment of Hpt cells with 5 μM rALF3 showed no induced protection against subsequent WSSV infection, whereas the synthetic crayfish ALF peptide could protect cells at a higher concentration (10 μM). The role of ALF3 was examined by injection of with WSSV pre-treated with rALF3 protein. The results clearly showed that rALF3 was able to reduce WSSV propagation and prolong the survival of shrimps.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009621-0
2009-06-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/6/1491.html?itemId=/content/journal/jgv/10.1099/vir.0.009621-0&mimeType=html&fmt=ahah

References

  1. Aketagawa J., Miyata T., Ohtsubo S., Nakamura T., Morita T., Hayashida H., Miyata T., Iwanaga S., Takao T., Shimonishi Y. 1986; Primary structure of limulus anticoagulant anti-lipopolysaccharide factor. J Biol Chem 261:7357–7365
    [Google Scholar]
  2. Beale K. M., Towle D. W., Jayasundara N., Smith C. M., Shields J. D., Small H. J., Greenwood S. J. 2008; Anti-lipopolysaccharide factors in the American lobster Homarus americanus : molecular characterization and transcriptional response to Vibrio fluvialis challenge. Comp Biochem Physiol Part D Genomics Proteomics 3:263–269 [CrossRef]
    [Google Scholar]
  3. Chaga O., Lignell M., Söderhäll K. 1995; The haematopoietic cells of the freshwater crayfish, Pacifastacus leniusculus . Anim Biol 4:59–70
    [Google Scholar]
  4. Dupuy J. W., Bonami J. R., Roch P. 2004; A synthetic antibacterial peptide from Mytilus galloprovincialis reduces mortality due to white spot syndrome virus in palaemonid shrimp. J Fish Dis 27:57–64 [CrossRef]
    [Google Scholar]
  5. Flegel T. W. 1997; Major viral diseases of the black tiger prawn ( Penaeus monodon ) in Thailand. World J Microbiol Biotechnol 13:433–442 [CrossRef]
    [Google Scholar]
  6. Imjongjirak C., Amparyup P., Tassanakajon A., Sittipraneed S. 2007; Antilipopolysaccharide factor (ALF) of mud crab Scylla paramamosain : molecular cloning, genomic organization and the antimicrobial activity of its synthetic LPS binding domain. Mol Immunol 44:3195–3203 [CrossRef]
    [Google Scholar]
  7. Itami T., Maeda M., Kondo M., Takahashi Y. 1999; Primary culture of lymphoid organ cells and haemocytes of kuruma shrimp, Penaeus japonicus . Methods Cell Sci 21:237–244 [CrossRef]
    [Google Scholar]
  8. Jenssen H., Hamill P., Hancock R. E. 2006; Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511 [CrossRef]
    [Google Scholar]
  9. Jiravanichpaisal P., Söderhäll K., Söderhäll I. 2004; Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immunol 17:265–275 [CrossRef]
    [Google Scholar]
  10. Jiravanichpaisal P., Söderhäll K., Söderhäll I. 2006; Characterization of white spot syndrome virus replication in in vitro -cultured haematopoietic stem cells of freshwater crayfish, Pacifastacus leniusculus . J Gen Virol 87:847–854 [CrossRef]
    [Google Scholar]
  11. Kasornchandra J., Khongpradit R., Ekpanithanpong U., Boonyaratpalin S. 1999; Progress in the development of shrimp cell cultures in Thailand. Methods Cell Sci 21:231–235 [CrossRef]
    [Google Scholar]
  12. Lei K., Li F., Zhang M., Yang H., Luo T., Xu X. 2008; Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Dev Comp Immunol 32:808–813 [CrossRef]
    [Google Scholar]
  13. Liu H., Jiravanichpaisal P., Söderhäll I., Cerenius L., Söderhäll K. 2006; Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus leniusculus . J Virol 80:10365–10371 [CrossRef]
    [Google Scholar]
  14. Liu H., Söderhäll K., Jiravanichpaisal P. 2009; Antiviral immunity in crustaceans. Fish Shellfish Immunol (in press). doi: 10.1016/j.fsi.2009.02.009
    [Google Scholar]
  15. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C t method. Methods 25:402–408 [CrossRef]
    [Google Scholar]
  16. Lo C.-F., Ho C.-H., Peng S.-E., Chen C.-H., Hsu H.-C., Chiu Y.-L., Chang C.-F., Liu K.-F., Su M.-S. other authors 1996; White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Dis Aquat Organ 27:215–225 [CrossRef]
    [Google Scholar]
  17. Luo T., Zhang X., Shao Z., Xu X. 2003; PmAV , a novel gene involved in virus resistance of shrimp Penaeus monodon . FEBS Lett 551:53–57 [CrossRef]
    [Google Scholar]
  18. Maeda M., Mizuki E., Itami T., Ohba M. 2003; Ovarian primary tissue culture of the kuruma shrimp Marsupenaeus japonicus . In Vitro Cell Dev Biol Anim 39:208–212
    [Google Scholar]
  19. Maeda M., Saitoh H., Mizuki E., Itami T., Ohba M. 2004; Replication of white spot syndrome virus in ovarian primary cultures from the kuruma shrimp, Marsupenaeus japonicus . J Virol Methods 116:89–94 [CrossRef]
    [Google Scholar]
  20. Marks H., Mennens M., Vlak J. M., van Hulten M. C. 2003; Transcriptional analysis of the white spot syndrome virus major virion protein genes. J Gen Virol 84:1517–1523 [CrossRef]
    [Google Scholar]
  21. Marks H., Vorst O., van Houwelingen A. M., van Hulten M. C., Vlak J. M. 2005; Gene-expression profiling of white spot syndrome virus in vivo . J Gen Virol 86:2081–2100 [CrossRef]
    [Google Scholar]
  22. Masuda M., Nakashima H., Ueda T., Naba H., Ikoma R., Otaka A., Terakawa Y., Tamamura H., Ibuka T. other authors 1992; A novel anti-HIV synthetic peptide, T-22 ([Tyr5,12,Lys7]-polyphemusin II). Biochem Biophys Res Commun 189:845–850 [CrossRef]
    [Google Scholar]
  23. Morimoto M., Mori H., Otake T., Ueba N., Kunita N., Niwa M., Murakami T., Iwanaga S. 1991; Inhibitory effect of tachyplesin I on the proliferation of human immunodeficiency virus in vitro . Chemotherapy 37:206–211 [CrossRef]
    [Google Scholar]
  24. Morita T., Ohtsubo S., Nakamura T., Tanaka S., Iwanaga S., Ohashi K., Niwa M. 1985; Isolation and biological activities of limulus anticoagulant (anti-LPS factor) which interacts with lipopolysaccharide (LPS). J Biochem 97:1611–1620
    [Google Scholar]
  25. Murakami T., Niwa M., Tokunaga F., Miyata T., Iwanaga S. 1991; Direct virus inactivation of tachyplesin I and its isopeptides from horseshoe crab hemocytes. Chemotherapy 37:327–334 [CrossRef]
    [Google Scholar]
  26. Nagoshi H., Inagawa H., Morii K., Harada H., Kohchi C., Nishizawa T., Taniguchi Y., Uenobe M., Honda T. other authors 2006; Cloning and characterization of a LPS-regulatory gene having an LPS binding domain in kuruma prawn Marsupenaeus japonicus . Mol Immunol 43:2061–2069 [CrossRef]
    [Google Scholar]
  27. Nakashima H., Masuda M., Murakami T., Koyanagi Y., Matsumoto A., Fujii N., Yamamoto N. 1992; Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion. Antimicrob Agents Chemother 36:1249–1255 [CrossRef]
    [Google Scholar]
  28. Pan J., Kurosky A., Xu B., Chopra A. K., Coppenhaver D. H., Singh I. P., Baron S. 2000; Broad antiviral activity in tissues of crustaceans. Antiviral Res 48:39–47 [CrossRef]
    [Google Scholar]
  29. Robalino J., Bartlett T. C., Chapman R. W., Gross P. S., Browdy C. L., Warr G. W. 2007; Double-stranded RNA and antiviral immunity in marine shrimp: inducible host mechanisms and evidence for the evolution of viral counter-responses. Dev Comp Immunol 31:539–547 [CrossRef]
    [Google Scholar]
  30. Roch P., Yang Y., Toubiana M., Aumelas A. 2008; NMR structure of mussel mytilin, and antiviral-antibacterial activities of derived synthetic peptides. Dev Comp Immunol 32:227–238 [CrossRef]
    [Google Scholar]
  31. Singh I. P., Chopra A. K., Coppenhaver D. H., Smith E., Poast J., Baron S. 1995; Vertebrate brains contain a broadly active antiviral substance. Antiviral Res 27:375–388 [CrossRef]
    [Google Scholar]
  32. Söderhäll I., Kim Y. A., Jiravanichpaisal P., Lee S. Y., Söderhäll K. 2005; An ancient role for a prokineticin domain in invertebrate hematopoiesis. J Immunol 174:6153–6160 [CrossRef]
    [Google Scholar]
  33. Somboonwiwat K., Marcos M., Tassanakajon A., Klinbunga S., Aumelas A., Romestand B., Gueguen Y., Boze H., Moulin G., Bachère E. 2005; Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon . Dev Comp Immunol 29:841–851 [CrossRef]
    [Google Scholar]
  34. Supungul P., Klinbunga S., Pichyangkura R., Hirono I., Aoki T., Tassanakajon A. 2004; Antimicrobial peptides discovered in the black tiger shrimp Penaeus monodon using the EST approach. Dis Aquat Organ 61:123–135 [CrossRef]
    [Google Scholar]
  35. Tamamura H., Kuroda M., Masuda M., Otaka A., Funakoshi S., Nakashima H., Yamamoto N., Waki M., Matsumoto A. other authors 1993; A comparative study of the solution structures of tachyplesin I and a novel anti-HIV synthetic peptide, T22 ([Tyr5,12, Lys7]-polyphemusin II), determined by nuclear magnetic resonance. Biochim Biophys Acta 1163, 209–216 [CrossRef]
    [Google Scholar]
  36. Tamamura H., Otaka A., Murakami T., Ishihara T., Ibuka T., Waki M., Matsumoto A., Yamamoto N., Fujii N. 1996; Interaction of an anti-HIV peptide, T22, with gp120 and CD4. Biochem Biophys Res Commun 219:555–559 [CrossRef]
    [Google Scholar]
  37. Tanaka S., Nakamura T., Morita T., Iwanaga S. 1982; Limulus anti-LPS factor: an anticoagulant which inhibits the endotoxin mediated activation of Limulus coagulation system. Biochem Biophys Res Commun 105:717–723 [CrossRef]
    [Google Scholar]
  38. Tapay L. M., Lu Y., Brock J. A., Nadala E. C., Jr & Loh P. C. 1995; Transformation of primary cultures of shrimp ( Penaeus stylirostris ) lymphoid (Oka) organ with Simian virus-40 (T) antigen. Proc Soc Exp Biol Med 209:73–78 [CrossRef]
    [Google Scholar]
  39. Tassanakajon A., Klinbunga S., Paunglarp N., Rimphanitchayakit V., Udomkit A., Jitrapakdee S., Sritunyalucksana K., Phongdara A., Pongsomboon S. other authors 2006; Penaeus monodon gene discovery project: the generation of an EST collection and establishment of a database. Gene 384:104–112 [CrossRef]
    [Google Scholar]
  40. Tharntada S., Somboonwiwat K., Rimphanitchayakit V., Tassanakajon A. 2008; Anti-lipopolysaccharide factors from the black tiger shrimp, Penaeus monodon , are encoded by two genomic loci. Fish Shellfish Immunol 24:46–54 [CrossRef]
    [Google Scholar]
  41. Tonganunt M., Nupan B., Saengsakda M., Suklour S., Wanna W., Senapin S., Chotigeat W., Phongdara A. 2008; The role of Pm-fortilin in protecting shrimp from white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol 25:633–637 [CrossRef]
    [Google Scholar]
  42. Wang C.-H., Yang H.-N., Tang C.-Y., Lu C.-H., Kou G.-H., Lo C.-F. 2000; Ultrastructure of white spot syndrome virus development in primary lymphoid organ cell cultures. Dis Aquat Organ 41:91–104 [CrossRef]
    [Google Scholar]
  43. Witteveldt J., Cifuentes C. C., Vlak J. M., van Hulten M. C. 2004a; Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J Virol 78:2057–2061 [CrossRef]
    [Google Scholar]
  44. Witteveldt J., Vlak J. M., van Hulten M. C. 2004b; Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish Shellfish Immunol 16:571–579 [CrossRef]
    [Google Scholar]
  45. Xie X., Li H., Xu L., Yang F. 2005; A simple and efficient method for purification of intact white spot syndrome virus (WSSV) viral particles. Virus Res 108:63–67 [CrossRef]
    [Google Scholar]
  46. Yasin B., Pang M., Turner J. S., Cho Y., Dinh N. N., Waring A. J., Lehrer R. I., Wagar E. A. 2000; Evaluation of the inactivation of infectious herpes simplex virus by host-defense peptides. Eur J Clin Microbiol Infect Dis 19:187–194 [CrossRef]
    [Google Scholar]
  47. Zhang X., Huang C., Qin Q. 2004; Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon . Antiviral Res 61:93–99 [CrossRef]
    [Google Scholar]
  48. Zhao Z. Y., Yin Z. X., Xu X. P., Weng S. P., Rao X. Y., Dai Z. X., Luo Y. W., Yang G., Li Z. S. other authors 2009; A novel C-type lectin from the shrimp Litopenaeus vannamei possesses anti-white spot syndrome virus activity. J Virol 83:347–356 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009621-0
Loading
/content/journal/jgv/10.1099/vir.0.009621-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error