1887

Abstract

The salivary gland hypertrophy virus (MdSGHV) is a large dsDNA virus that infects and sterilizes adult houseflies. The transcriptome of this newly described virus was analysed by rapid amplification of cDNA 3′-ends (3′-RACE) and RT-PCR. Direct sequencing of 3′-RACE products revealed 78 poly(A) transcripts containing 95 of the 108 putative ORFs. An additional six ORFs not amplified by 3′-RACE were detected by RT-PCR. Only seven of the 108 putative ORFs were not amplified by either 3′-RACE or RT-PCR. A series of 5′-RACE reactions were conducted on selected ORFs that were identified by 3′-RACE to be transcribed in tandem (tandem transcripts). In the majority of cases, the downstream ORFs were detected as single transcripts as well as components of the tandem transcripts, whereas the upstream ORFs were found only in tandem transcripts. The only exception was the upstream ORF MdSGHV084, which was differentially transcribed as a single transcript at 1 and 2 days post-infection (days p.i.) and as a tandem transcript (MdSGHV084/085) at 2 days p.i. Transcriptome analysis of MdSGHV detected splicing in the 3′ untranslated region (3′-UTR) and extensive heterogeneity in the polyadenylation signals and cleavage sites. In addition, 23 overlapping antisense transcripts were found. In conclusion, sequencing the 3′-RACE products without cloning served as an alternative approach to detect both 3′-UTRs and transcript variants of this large DNA virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009613-0
2009-05-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1270.html?itemId=/content/journal/jgv/10.1099/vir.0.009613-0&mimeType=html&fmt=ahah

References

  1. Akusjarvi, G. ( 2008; ). Temporal regulation of adenovirus major late alternative RNA splicing. Front Biosci 13, 5006–5015.
    [Google Scholar]
  2. Amargier, A., Lyon, J. P., Vago, C., Meynadier, G. & Veyrunes, J. C. ( 1979; ). Mise en évidence et purification d'un virus dans la prolifération monstrueuse glandulaire d'insectes. Etude sur Merodon equestris (Diptera, Syrphidae). Note. C R Seances Acad Sci D 289, 481–484 (in French).
    [Google Scholar]
  3. Andrews, E. M. & Dimaio, D. ( 1993; ). Hierarchy of polyadenylation site usage by bovine papillomavirus in transformed mouse cells. J Virol 67, 7705–7710.
    [Google Scholar]
  4. Barksdale, S. K. & Baker, C. C. ( 1995; ). The human-immunodeficiency-virus type-1 rev protein and the rev-responsive element counteract the effect of an inhibitory 5′ splice-site in a 3′ untranslated region. Mol Cell Biol 15, 2962–2971.
    [Google Scholar]
  5. Beaudoing, E., Freier, S., Wyatt, J. R., Claverie, J. M. & Gautheret, D. ( 2000; ). Patterns of variant polyadenylation signal usage in human genes. Genome Res 10, 1001–1010.[CrossRef]
    [Google Scholar]
  6. Berget, S. M., Moore, C. & Sharp, P. A. ( 1977; ). Spliced segments at 5′ terminus of adenovirus 2 late messenger-RNA. Proc Natl Acad Sci U S A 74, 3171–3175.[CrossRef]
    [Google Scholar]
  7. Bieleski, L. & Talbot, S. J. ( 2001; ). Kaposi's sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosome entry site. J Virol 75, 1864–1869.[CrossRef]
    [Google Scholar]
  8. Carlile, M., Nalbant, P., Preston-Fayers, K., McHaffie, G. S. & Werner, A. ( 2008; ). Processing of naturally occurring sense/antisense transcripts of the vertebrate Slc34a gene into short RNAs. Physiol Genomics 34, 95–100.[CrossRef]
    [Google Scholar]
  9. Chisholm, G. E. & Henner, D. J. ( 1988; ). Multiple early transcripts and splicing of the Autographa californica nuclear polyhedrosis virus IE-1 gene. J Virol 62, 3193–3200.
    [Google Scholar]
  10. Coler, R. R., Boucias, D. G., Frank, J. H., Maruniak, J. E., Garcia-Canedo, A. & Pendland, J. C. ( 1993; ). Characterization and description of a virus causing salivary gland hyperplasia in the housefly, Musca domestica. Med Vet Entomol 7, 275–282.[CrossRef]
    [Google Scholar]
  11. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A. & Ganem, D. ( 1998; ). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72, 8309–8315.
    [Google Scholar]
  12. Friesen, P. D. & Miller, L. K. ( 1985; ). Temporal regulation of baculovirus RNA: overlapping early and late transcripts. J Virol 54, 392–400.
    [Google Scholar]
  13. Fukuda, Y., Nakayama, Y. & Tomita, M. ( 2003; ). On dynamics of overlapping genes in bacterial genomes. Gene 323, 181–187.[CrossRef]
    [Google Scholar]
  14. Furth, P. A. & Baker, C. C. ( 1991; ). An element in the bovine papillomavirus late 3′ untranslated region reduces polyadenylated cytoplasmic RNA levels. J Virol 65, 5806–5812.
    [Google Scholar]
  15. Furth, P. A., Choe, W. T., Rex, J. H., Byrne, J. C. & Baker, C. C. ( 1994; ). Sequences homologous to 5′ splice sites are required for the inhibitory activity of papillomavirus late 3′ untranslated regions. Mol Cell Biol 14, 5278–5289.
    [Google Scholar]
  16. Garcia-Maruniak, A., Maruniak, J. E., Farmerie, W. & Boucias, D. G. ( 2008; ). Sequence analysis of a non-classified, non-occluded DNA virus that causes salivary gland hypertrophy of Musca domestica, MdSGHV. Virology 377, 184–196.[CrossRef]
    [Google Scholar]
  17. Garcia-Maruniak, A., Abd-Alla, A. M. M., Salem, T. Z., Parker, A. G., Lietze, V.-U., van Oers, M. M., Maruniak, J. E., Kim, W., Burand, J. P. & other authors ( 2009; ). Two viruses that cause salivary gland hypertrophy in Glossina pallidipes and Musca domestica are related and form a distinct phylogenetic clade. J Gen Virol 90, 334–346.[CrossRef]
    [Google Scholar]
  18. Goraczniak, R. & Gunderson, S. I. ( 2008; ). The regulatory element in the 3′-untranslated region of human papillomavirus 16 inhibits expression by binding CUG-binding protein 1. J Biol Chem 283, 2286–2296.[CrossRef]
    [Google Scholar]
  19. Gouteux, J. P. ( 1987; ). Prevalence of enlarged salivary glands in Glossina palpalis, G. pallicera, and G. nigrofusca (Diptera: Glossinidae) from the Vavoua area, Ivory Coast. J Med Entomol 24, 268 [CrossRef]
    [Google Scholar]
  20. Graham, S. V. ( 2008; ). Papillomavirus 3′ UTR regulatory elements. Front Biosci 13, 5646–5663.
    [Google Scholar]
  21. Gross, C. H. & Rohrmann, G. F. ( 1993; ). Analysis of the role of 5′ promoter elements and 3′ flanking sequences on the expression of a baculovirus polyhedron envelope protein gene. Virology 192, 273–281.[CrossRef]
    [Google Scholar]
  22. Hastings, M. L., Milcarek, C., Martincic, K., Peterson, M. L. & Munroe, S. H. ( 1997; ). Expression of the thyroid hormone receptor gene, erbAα, in B lymphocytes: alternative mRNA processing is independent of differentiation but correlates with antisense RNA levels. Nucleic Acids Res 25, 4296–4300.[CrossRef]
    [Google Scholar]
  23. Hastings, M. L., Ingle, H. A., Lazar, M. A. & Munroe, S. H. ( 2000; ). Post-transcriptional regulation of thyroid hormone receptor expression by cis-acting sequences and a naturally occurring antisense RNA. J Biol Chem 275, 11507–11513.[CrossRef]
    [Google Scholar]
  24. Hilger, C., Velhagen, I., Zentgraf, H. & Schroder, C. H. ( 1991; ). Diversity of hepatitis-B virus X gene related transcripts in hepatocellular carcinoma – a novel polyadenylation site on viral DNA. J Virol 65, 4284–4291.
    [Google Scholar]
  25. Iseli, C., Stevenson, B. J., de Souza, S. J., Samaia, H. B., Camargo, A. A., Buetow, K. H., Strausberg, R. L., Simpson, A. J. G., Bucher, P. & Jongeneel, C. V. ( 2002; ). Long-range heterogeneity at the 3′ ends of human mRNAs. Genome Res 12, 1068–1074.[CrossRef]
    [Google Scholar]
  26. Jaenson, T. G. T. ( 1978; ). Virus-like rods associated with salivary gland hyperplasia in tsetse, Glossina pallidipes. Trans R Soc Trop Med Hyg 72, 234–238.[CrossRef]
    [Google Scholar]
  27. Klemenz, R., Reinhardt, M. & Diggelmann, H. ( 1981; ). Sequence determination of the 3′ end of mouse mammary tumor virus RNA. Mol Biol Rep 7, 123–126.[CrossRef]
    [Google Scholar]
  28. Kumar, M. & Carmichael, G. G. ( 1998; ). Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 62, 1415–1434.
    [Google Scholar]
  29. Lamb, R. A. & Horvath, C. M. ( 1991; ). Diversity of coding strategies in influenza viruses. Trends Genet 7, 261–266.[CrossRef]
    [Google Scholar]
  30. Lavorgna, G., Dahary, D., Lehner, B., Sorek, R., Sanderson, C. M. & Casari, G. ( 2004; ). In search of antisense. Trends Biochem Sci 29, 88–94.[CrossRef]
    [Google Scholar]
  31. Lavorgna, G., Triunfo, R., Santoni, F., Orfanelli, U., Noci, S., Bulfone, A., Zanetti, G. & Casari, G. ( 2005; ). AntiHunter 2.0: increased speed and sensitivity in searching blast output for EST antisense transcripts. Nucleic Acids Res 33, W665–W668.[CrossRef]
    [Google Scholar]
  32. Lehner, B., Williams, G., Campbell, R. D. & Sanderson, C. M. ( 2002; ). Antisense transcripts in the human genome. Trends Genet 18, 63–65.[CrossRef]
    [Google Scholar]
  33. Lietze, V.-U., Geden, C. J., Blackburn, P. & Boucias, D. G. ( 2007; ). Effects of salivary gland hypertrophy virus on the reproductive behavior of the house fly, Musca domestica. Appl Environ Microbiol 73, 6811–6818.[CrossRef]
    [Google Scholar]
  34. Lin, S. F., Robinson, D. R., Miller, G. & Kung, H. J. ( 1999; ). Kaposi's sarcoma-associated herpesvirus encodes a bZIP protein with homology to BZLF1 of Epstein–Barr virus. J Virol 73, 1909–1917.
    [Google Scholar]
  35. Majerciak, V., Yamanegi, K. & Zheng, Z. M. ( 2006; ). Gene structure and expression of Kaposi's sarcoma-associated herpesvirus ORF56, ORF57, ORF58, and ORF59. J Virol 80, 11968–11981.[CrossRef]
    [Google Scholar]
  36. Minter-Goedbloed, E. & Minter, D. M. ( 1989; ). Salivary gland hyperplasia and trypanosome infection of Glossina in two areas of Kenya. Trans R Soc Trop Med Hyg 83, 640–641.[CrossRef]
    [Google Scholar]
  37. Mount, S. M. ( 1982; ). A catalogue of splice junction sequences. Nucleic Acids Res 10, 459–472.[CrossRef]
    [Google Scholar]
  38. Munroe, S. H. & Lazar, M. A. ( 1991; ). Inhibition of c-erbA mRNA splicing by a naturally occurring antisense RNA. J Biol Chem 266, 22083–22086.
    [Google Scholar]
  39. Nasseri, M., Wettstein, F. O. & Stevens, J. G. ( 1982; ). Two colinear and spliced viral transcripts are present in non-virus-producing benign and malignant neoplasms induced by the shope (rabbit) papilloma virus. J Virol 44, 263–268.
    [Google Scholar]
  40. Nasseri, M., Hirochika, R., Broker, T. R. & Chow, L. T. ( 1987; ). A human papilloma virus type-11 transcript encoding an E1 or E4 protein. Virology 159, 433–439.[CrossRef]
    [Google Scholar]
  41. Norris, F. A., Auethavekiat, V. & Majerus, P. W. ( 1995; ). The isolation and characterization of cDNA-encoding human and rat brain inositol polyphosphate 4-phosphatase. J Biol Chem 270, 16128–16133.[CrossRef]
    [Google Scholar]
  42. Otieno, L. H., Kokwaro, E. D., Chimtawi, M. & Onyango, P. ( 1980; ). Prevalence of enlarged salivary glands in wild populations of Glossina pallidipes in Kenya, with a note on the ultrastructure of the affected organ. J Invertebr Pathol 36, 113–118.[CrossRef]
    [Google Scholar]
  43. Passarelli, A. L. & Guarino, L. A. ( 2007; ). Baculovirus late and very late gene regulation. Curr Drug Targets 8, 1103–1115.[CrossRef]
    [Google Scholar]
  44. Proudfoot, N. ( 1991; ). Poly(A) signals. Cell 64, 671–674.[CrossRef]
    [Google Scholar]
  45. Rixon, F. J. & Clements, J. B. ( 1982; ). Detailed structural analysis of two spliced HSV-1 immediate-early messenger-RNAs. Nucleic Acids Res 10, 2241–2256.[CrossRef]
    [Google Scholar]
  46. Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M. A. & Barrell, B. ( 2000; ). Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945.[CrossRef]
    [Google Scholar]
  47. Sang, R. C., Jura, W. G. Z. O., Otieno, L. H. & Mwangi, R. W. ( 1998; ). The effects of a DNA virus infection on the reproductive potential of female tsetse flies, Glossina morsitans centralis and Glossina morsitans morsitans (Diptera: Glossinidae). Mem Inst Oswaldo Cruz 93, 861–864.[CrossRef]
    [Google Scholar]
  48. Sang, R. C., Jura, W. G. Z. O., Otieno, L. H., Mwangi, R. W. & Ogaja, P. ( 1999; ). The effects of a tsetse DNA virus infection on the functions of the male accessory reproductive gland in the host fly Glossina morsitans centralis (Diptera; Glossinidae). Curr Microbiol 38, 349–354.[CrossRef]
    [Google Scholar]
  49. Schwartz, S. ( 2008; ). HPV-16 RNA processing. Front Biosci 13, 5880–5891.
    [Google Scholar]
  50. Shaw, M. K. & Moloo, S. K. ( 1993; ). Virus-like particles in Rickettsia within the midgut epithelial cells of Glossina morsitans centralis and Glossina brevipalpis. J Invertebr Pathol 61, 162–166.[CrossRef]
    [Google Scholar]
  51. Shearwin, K. E., Callen, B. P. & Egan, J. B. ( 2005; ). Transcriptional interference – a crash course. Trends Genet 21, 339–345.[CrossRef]
    [Google Scholar]
  52. Shendure, J. & Church, G. M. ( 2002; ). Computational discovery of sense–antisense transcription in the human and mouse genomes. Genome Biol 3, RESEARCH0044
    [Google Scholar]
  53. Silver Key, S. C. & Pagano, J. S. ( 1997; ). A noncanonical poly(A) signal, UAUAAA, and flanking elements in Epstein–Barr virus DNA polymerase mRNA function in cleavage and polyadenylation assays. Virology 234, 147–159.[CrossRef]
    [Google Scholar]
  54. Simonsen, C. C. & Levinson, A. D. ( 1983; ). Analysis of processing and polyadenylation signals of the hepatitis-B virus surface-antigen gene by using simian virus 40–hepatitis B virus chimeric plasmids. Mol Cell Biol 3, 2250–2258.
    [Google Scholar]
  55. Sun, M., Hurst, L. D., Carmichael, G. G. & Chen, J. J. ( 2005; ). Evidence for a preferential targeting of 3′-UTRs by cis-encoded natural antisense transcripts. Nucleic Acids Res 33, 5533–5543.[CrossRef]
    [Google Scholar]
  56. Taniguchi, A. & Yasumoto, S. ( 1990; ). A major transcript of human papillomavirus type 16 in transformed NIH 3T3 cells contains polycistronic mRNA encoding E7, E5, and E1–E4 fusion gene. Virus Genes 3, 221–233.[CrossRef]
    [Google Scholar]
  57. Vanhée-Brossollet, C. & Vaquero, C. ( 1998; ). Do natural antisense transcripts make sense in eukaryotes? Gene 211, 1–9.[CrossRef]
    [Google Scholar]
  58. van Oers, M. M., Vlak, J. M., Voorma, H. O. & Thomas, A. A. ( 1999; ). Role of the 3′ untranslated region of baculovirus p10 mRNA in high-level expression of foreign genes. J Gen Virol 80, 2253–2262.
    [Google Scholar]
  59. Veeramachaneni, V., Makalowski, W., Galdzicki, M., Sood, R. & Makalowska, I. ( 2004; ). Mammalian overlapping genes: the comparative perspective. Genome Res 14, 280–286.[CrossRef]
    [Google Scholar]
  60. Weil, J. E. & Beemon, K. L. ( 2006; ). A 3′ UTR sequence stabilizes termination codons in the unspliced RNA of Rous sarcoma virus. RNA 12, 102–110.[CrossRef]
    [Google Scholar]
  61. Zhao, J., Hyman, L. & Moore, C. ( 1999; ). Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63, 405–445.
    [Google Scholar]
  62. Zheng, Z. M. & Baker, C. C. ( 2006; ). Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 11, 2286–2302.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009613-0
Loading
/content/journal/jgv/10.1099/vir.0.009613-0
Loading

Data & Media loading...

Supplements

[Single PDF](108 KB)

PDF

[Single PDF](135 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error