1887

Abstract

The ORF3 protein of hepatitis E virus (HEV), the precise cellular functions of which remain obscure, was used in a yeast two-hybrid screen to identify its cellular binding partners. One of the identified interacting partners was fibrinogen B protein. The ORF3–fibrinogen B interaction was verified by co-immunoprecipitation and fluorescence resonance energy transfer in mammalian cells. Fibrinogen is a hepatic acute-phase protein and serves as a central molecule that maintains host homeostasis and haemostasis during an acute-phase response. Metabolic labelling of ORF3-transfected HuH-7 cells showed that secreted as well as intracellular levels of fibrinogen were decreased in these cells compared with vector-transfected controls. Northern hybridization and RT-PCR analyses revealed that the mRNA levels of all three chains of fibrinogen, A, B and , were transcriptionally downregulated in ORF3-transfected cells. The constitutive expression of fibrinogen genes can be significantly upregulated by interleukin (IL)-6, an important mediator of liver-specific gene expression during an acute-phase response. Transcription of fibrinogen genes after IL-6 stimulation was less in ORF3-expressing cells compared with controls. This report adds one more biological function to, and advances our understanding of, the cellular role of the ORF3 protein of HEV. The possible implications of these findings in the virus life cycle are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009274-0
2009-06-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/6/1359.html?itemId=/content/journal/jgv/10.1099/vir.0.009274-0&mimeType=html&fmt=ahah

References

  1. Altieri, D. C., Plescia, J. & Plow, E. F. ( 1993; ). The structural motif glycine 190-valine 202 of the fibrinogen γ chain interacts with CD11b/CD18 integrin (α M β 2, Mac-1) and promotes leukocyte adhesion. J Biol Chem 268, 1847–1853.
    [Google Scholar]
  2. Blomback, B. ( 1996; ). Fibrinogen and fibrin – proteins with complex roles in hemostasis and thrombosis. Thromb Res 83, 1–75.[CrossRef]
    [Google Scholar]
  3. Chandra, V., Kar-Roy, A., Kumari, S., Mayor, S. & Jameel, S. ( 2008; ). The hepatitis E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and the acute-phase response. J Virol 82, 7100–7110.[CrossRef]
    [Google Scholar]
  4. Crabtree, G. R. & Kant, J. A. ( 1982; ). Coordinate accumulation of the mRNAs for the α, β, and γ chains of rat fibrinogen following defibrination. J Biol Chem 257, 7277–7279.
    [Google Scholar]
  5. Danishefsky, K., Hartwig, R., Banerjee, D. & Redman, C. ( 1990; ). Intracellular fate of fibrinogen Bβ chain expressed in COS cells. Biochim Biophys Acta 1048, 202–208.[CrossRef]
    [Google Scholar]
  6. Esmon, C. T., Taylor, F. B., Jr & Snow, T. R. ( 1991; ). Inflammation and coagulation: linked processes potentially regulated through a common pathway mediated by protein C. Thromb Haemost 66, 160–165.
    [Google Scholar]
  7. Fuller, G. M. & Zhang, Z. ( 2001; ). Transcriptional control mechanism of fibrinogen gene expression. Ann N Y Acad Sci 936, 469–479.
    [Google Scholar]
  8. Graff, J., Torian, U., Nguyen, H. & Emerson, S. U. ( 2006; ). A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. J Virol 80, 5919–5926.[CrossRef]
    [Google Scholar]
  9. Huang, Y. W., Opriessnig, T., Halbur, P. G. & Meng, X. J. ( 2007; ). Initiation at the third in-frame AUG codon of open reading frame 3 of the hepatitis E virus is essential for viral infectivity in vivo. J Virol 81, 3018–3026.[CrossRef]
    [Google Scholar]
  10. Huber, P., Laurent, M. & Dalmon, J. ( 1990; ). Human β-fibrinogen gene expression. Upstream sequences involved in its tissue specific expression and its dexamethasone and interleukin 6 stimulation. J Biol Chem 265, 5695–5701.
    [Google Scholar]
  11. Jameel, S., Zafrullah, M., Ozdener, M. H. & Panda, S. K. ( 1996; ). Expression in animal cells and characterization of the hepatitis E virus structural proteins. J Virol 70, 207–216.
    [Google Scholar]
  12. Kar-Roy, A., Korkaya, H., Oberoi, R., Lal, S. K. & Jameel, S. ( 2004; ). The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase. J Biol Chem 279, 28345–28357.[CrossRef]
    [Google Scholar]
  13. Korkaya, H., Jameel, S., Gupta, D., Tyagi, S., Kumar, R., Zafrullah, M., Mazumdar, M., Lal, S. K., Xiaofang, L. & other authors ( 2001; ). The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK. J Biol Chem 276, 42389–42400.[CrossRef]
    [Google Scholar]
  14. Levi, M., Keller, T. T., van Gorp, E. & ten Cate, H. ( 2003; ). Infection and inflammation and the coagulation system. Cardiovasc Res 60, 26–39.[CrossRef]
    [Google Scholar]
  15. Lorenzo, F. R., Tanaka, T., Takahashi, H., Ichiyama, K., Hoshino, Y., Yamada, K., Inoue, J., Takahashi, M. & Okamoto, H. ( 2008; ). Mutational events during the primary propagation and consecutive passages of hepatitis E virus strain JE03-1760F in cell culture. Virus Res 137, 86–96.[CrossRef]
    [Google Scholar]
  16. Lutticken, C., Wegenka, U. M., Yuan, J., Buschmann, J., Schindler, C., Ziemiecki, A., Harpur, A. G., Wilks, A. F., Yasukawa, K. & other authors ( 1994; ). Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science 263, 89–92.[CrossRef]
    [Google Scholar]
  17. Mizuguchi, J., Hu, C. H., Cao, Z., Loeb, K. R., Chung, D. W. & Davie, E. W. ( 1995; ). Characterization of the 5′-flanking region of the gene for the γ chain of human fibrinogen. J Biol Chem 270, 28350–28356.[CrossRef]
    [Google Scholar]
  18. Moin, S. M., Panteva, M. & Jameel, S. ( 2007; ). The hepatitis E virus Orf3 protein protects cells from mitochondrial depolarization and death. J Biol Chem 282, 21124–21133.[CrossRef]
    [Google Scholar]
  19. Mollenhauer, H. H., Morre, D. J. & Rowe, L. D. ( 1990; ). Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys Acta 1031, 225–246.[CrossRef]
    [Google Scholar]
  20. Otto, J. M., Grenett, H. E. & Fuller, G. M. ( 1987; ). The coordinated regulation of fibrinogen gene transcription by hepatocyte-stimulating factor and dexamethasone. J Cell Biol 105, 1067–1072.[CrossRef]
    [Google Scholar]
  21. Purcell, R. H. & Emerson, S. U. ( 2000; ). Hepatitis E virus infection. Lancet 355, 578
    [Google Scholar]
  22. Ratra, R., Kar-Roy, A. & Lal, S. K. ( 2008; ). The ORF3 protein of hepatitis E virus interacts with hemopexin by means of its 26 amino acid N-terminal hydrophobic domain II. Biochemistry 47, 1957–1969.[CrossRef]
    [Google Scholar]
  23. Redman, C. M. & Xia, H. ( 2001; ). Fibrinogen biosynthesis. Assembly, intracellular degradation, and association with lipid synthesis and secretion. Ann N Y Acad Sci 936, 480–495.
    [Google Scholar]
  24. Roy, S. N., Mukhopadhyay, G. & Redman, C. M. ( 1990; ). Regulation of fibrinogen assembly. Transfection of Hep G2 cells with Bβ cDNA specifically enhances synthesis of the three component chains of fibrinogen. J Biol Chem 265, 6389–6393.
    [Google Scholar]
  25. Roy, S. N., Procyk, R., Kudryk, B. J. & Redman, C. M. ( 1991; ). Assembly and secretion of recombinant human fibrinogen. J Biol Chem 266, 4758–4763.
    [Google Scholar]
  26. Roy, S., Yu, S., Banerjee, D., Overton, O., Mukhopadhyay, G., Oddoux, C., Grieninger, G. & Redman, C. ( 1992; ). Assembly and secretion of fibrinogen. Degradation of individual chains. J Biol Chem 267, 23151–23158.
    [Google Scholar]
  27. Rubel, C., Fernández, G. C., Rosa, F. A., Gómez, S., Bompadre, M. B., Coso, O. A., Isturiz, M. A. & Palermo, M. S. ( 2002; ). Soluble fibrinogen modulates neutrophil functionality through the activation of an extracellular signal-regulated kinase-dependent pathway. J Immunol 168, 3527–3535.[CrossRef]
    [Google Scholar]
  28. Rubel, C., Gómez, S., Fernández, G. C., Isturiz, M. A., Caamano, J. & Palermo, M. S. ( 2003; ). Fibrinogen–CD11b/CD18 interaction activates the NF-κB pathway and delays apoptosis in human neutrophils. Eur J Immunol 33, 1429–1438.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Sitrin, R. G., Pan, P. M., Srikanth, S. & Todd, R. F., III ( 1998; ). Fibrinogen activates NF-κB transcription factors in mononuclear phagocytes. J Immunol 161, 1462–1470.
    [Google Scholar]
  31. Smiley, S. T., King, J. A. & Hancock, W. W. ( 2001; ). Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J Immunol 167, 2887–2894.[CrossRef]
    [Google Scholar]
  32. Surjit, M., Oberoi, R., Kumar, R. & Lal, S. K. ( 2006; ). Enhanced α1 microglobulin secretion from hepatitis E virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101. J Biol Chem 281, 8135–8142.[CrossRef]
    [Google Scholar]
  33. Tanaka, T., Takahashi, M., Kusano, E. & Okamoto, H. ( 2007; ). Development and evaluation of an efficient cell-culture system for hepatitis E virus. J Gen Virol 88, 903–911.[CrossRef]
    [Google Scholar]
  34. Tyagi, S., Jameel, S. & Lal, S. K. ( 2001; ). Self-association and mapping of the interaction domain of hepatitis E virus ORF3 protein. J Virol 75, 2493–2498.[CrossRef]
    [Google Scholar]
  35. Tyagi, S., Korkaya, H., Zafrullah, M., Jameel, S. & Lal, S. K. ( 2002; ). The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2. J Biol Chem 277, 22759–22767.[CrossRef]
    [Google Scholar]
  36. Tyagi, S., Surjit, M., Roy, A. K., Jameel, S. & Lal, S. K. ( 2004; ). The ORF3 protein of hepatitis E virus interacts with liver-specific α1-microglobulin and its precursor α1-microglobulin/bikunin precursor (AMBP) and expedites their export from the hepatocyte. J Biol Chem 279, 29308–29319.[CrossRef]
    [Google Scholar]
  37. Tyagi, S., Surjit, M. & Lal, S. K. ( 2005; ). The 41-amino-acid C-terminal region of the hepatitis E virus ORF3 protein interacts with bikunin, a kunitz-type serine protease inhibitor. J Virol 79, 12081–12087.[CrossRef]
    [Google Scholar]
  38. Ugarova, T. P. & Yakubenko, V. P. ( 2001; ). Recognition of fibrinogen by leukocyte integrins. Ann N Y Acad Sci 936, 368–385.
    [Google Scholar]
  39. Walzog, B., Weinmann, P., Jeblonski, F., Scharffetter-Kochanek, K., Bommert, K. & Gaehtgens, P. ( 1999; ). A role for β 2 integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response. FASEB J 13, 1855–1865.
    [Google Scholar]
  40. Wang, Y., Zhang, H., Ling, R., Li, H. & Harrison, T. J. ( 2000; ). The complete sequence of hepatitis E virus genotype 4 reveals an alternative strategy for translation of open reading frames 2 and 3. J Gen Virol 81, 1675–1686.
    [Google Scholar]
  41. Xia, H. & Redman, C. ( 1999; ). The degradation of nascent fibrinogen chains is mediated by the ubiquitin proteasome pathway. Biochem Biophys Res Commun 261, 590–597.[CrossRef]
    [Google Scholar]
  42. Yu, S., Sher, B., Kudryk, B. & Redman, C. M. ( 1984; ). Fibrinogen precursors. Order of assembly of fibrinogen chains. J Biol Chem 259, 10574–10581.
    [Google Scholar]
  43. Zafrullah, M., Ozdener, M. H., Panda, S. K. & Jameel, S. ( 1997; ). The ORF3 protein of hepatitis E virus is a phosphoprotein that associates with the cytoskeleton. J Virol 71, 9045–9053.
    [Google Scholar]
  44. Zhang, Z., Fuentes, N. L. & Fuller, G. M. ( 1995; ). Characterization of the IL-6 responsive elements in the γ fibrinogen gene promoter. J Biol Chem 270, 24287–24291.[CrossRef]
    [Google Scholar]
  45. Zhang, Z., Jones, S., Hagood, J. S., Fuentes, N. L. & Fuller, G. M. ( 1997; ). STAT3 acts as a co-activator of glucocorticoid receptor signaling. J Biol Chem 272, 30607–30610.[CrossRef]
    [Google Scholar]
  46. Zhong, Z., Wen, Z. & Darnell, J. E., Jr ( 1994; ). Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95–98.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009274-0
Loading
/content/journal/jgv/10.1099/vir.0.009274-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error