1887

Abstract

Among the structural and nonstructural proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), the nucleocapsid (N) protein plays pivotal roles in the biology and pathogenesis of viral infection. N protein is thought to dysregulate cell signalling and the transcription of cellular genes, including , which encodes a prothrombinase implicated in vascular thrombosis, fibrin deposition and pneumocyte necrosis. Here, we showed that N protein expressed in cultured human cells was predominantly found in the cytoplasm and was competent in repressing the transcriptional activity driven by interferon-stimulated response elements. However, the expression of N protein did not influence the transcription from the promoter. More importantly, N protein did not modulate the expression of FGL2 mRNA or protein in transfected or SARS-CoV-infected cells. Taken together, our findings did not support the model in which SARS-CoV N protein specifically modulates transcription of the gene to cause fibrosis and vascular thrombosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009209-0
2009-09-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/9/2107.html?itemId=/content/journal/jgv/10.1099/vir.0.009209-0&mimeType=html&fmt=ahah

References

  1. Almazán, F., Galán, C. & Enjuanes, L. ( 2004; ). The nucleoprotein is required for efficient coronavirus genome replication. J Virol 78, 12683–12688.[CrossRef]
    [Google Scholar]
  2. Chan, C.-P., Siu, K.-L., Chin, K.-T., Yuen, K.-Y., Zheng, B. & Jin, D.-Y. ( 2006; ). Modulation of the unfolded protein response by severe acute respiratory syndrome coronavirus spike protein. J Virol 80, 9279–9287.[CrossRef]
    [Google Scholar]
  3. Chen, H., Wurm, T., Britton, P., Brooks, G. & Hiscox, J. A. ( 2002; ). Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. J Virol 76, 5233–5250.[CrossRef]
    [Google Scholar]
  4. Chen, W.-J., Yang, J.-Y., Lin, J. H., Fann, C. S. J., Osyetrov, V., King, C.-C., Chen, Y.-M. A., Chang, H.-L., Kuo, H.-W. & other authors ( 2006; ). Nasopharyngeal shedding of severe acute respiratory syndrome-associated coronavirus is associated with genetic polymorphisms. Clin Infect Dis 42, 1561–1569.[CrossRef]
    [Google Scholar]
  5. Cheng, V. C. C., Lau, S. K. P., Woo, P. C. Y. & Yuen, K. Y. ( 2007; ). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 20, 660–694.[CrossRef]
    [Google Scholar]
  6. Chin, K.-T., Chun, A. C. S., Ching, Y.-P., Jeang, K.-T. & Jin, D.-Y. ( 2007; ). HTLV-1 Tax represses nuclear receptor-dependent transcription by targeting coactivator TAX1BP1. Cancer Res 67, 1072–1081.[CrossRef]
    [Google Scholar]
  7. Choy, E. Y.-W., Kok, K.-H., Tsao, S. W. & Jin, D.-Y. ( 2008; ). Utility of Epstein–Barr virus-encoded small RNA promoters for driving the expression of fusion transcripts harboring small hairpin RNAs. Gene Ther 15, 191–202.[CrossRef]
    [Google Scholar]
  8. Du, L., Zhao, G., Lin, Y., Sui, H., Chan, C., Ma, S., He, Y., Jiang, S., Wu, C. & other authors ( 2008; ). Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. J Immunol 180, 948–956.[CrossRef]
    [Google Scholar]
  9. Fan, Z., Zhuo, Y., Tan, X., Zhou, Z., Yuan, J., Qiang, B., Yan, J., Peng, X. & Gao, G. F. ( 2006; ). SARS-CoV nucleocapsid protein binds to hUbc9, a ubiquitin conjugating enzyme of the sumoylation system. J Med Virol 78, 1365–1373.[CrossRef]
    [Google Scholar]
  10. Gorbalenya, A. E., Snijder, E. J. & Spaan, W. J. M. ( 2004; ). Severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J Virol 78, 7863–7866.[CrossRef]
    [Google Scholar]
  11. Guan, Y., Zheng, B. J., He, Y. Q., Liu, X. L., Zhuang, Z. X., Cheung, C. L., Luo, S. W., Li, P. H., Zhang, L. J. & other authors ( 2003; ). Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278.[CrossRef]
    [Google Scholar]
  12. Han, M., Yan, W., Huang, Y., Yao, H., Wang, Z., Xi, D., Li, W., Zhou, Y., Hou, J. & other authors ( 2008; ). The nucleocapsid protein of SARS-CoV induces transcription of hfgl2 prothrombinase gene dependent on C/EBPα. J Biochem 144, 51–62.[CrossRef]
    [Google Scholar]
  13. He, R., Leeson, A., Andonov, A., Li, Y., Bastien, N., Cao, J., Osiowy, C., Dobie, F., Cutts, T. & other authors ( 2003; ). Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun 311, 870–876.[CrossRef]
    [Google Scholar]
  14. Hurst, K. R., Kuo, L., Koetzner, C. A., Ye, R., Hsue, B. & Masters, P. S. ( 2005; ). A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J Virol 79, 13285–13297.[CrossRef]
    [Google Scholar]
  15. Kok, K. H. & Jin, D.-Y. ( 2006; ). Influenza A virus NS1 protein does not suppress RNA interference in mammalian cells. J Gen Virol 87, 2639–2644.[CrossRef]
    [Google Scholar]
  16. Kok, K. H., Ng, M.-H. J., Ching, Y.-P. & Jin, D.-Y. ( 2007; ). Human TRBP and PACT interact with each other and associate with Dicer to facilitate the production of small interfering RNA. J Biol Chem 282, 17649–17657.[CrossRef]
    [Google Scholar]
  17. Kopecky-Bromberg, S. A., Martínez-Sobrido, L., Frieman, M., Baric, R. A. & Palese, P. ( 2007; ). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81, 548–557.[CrossRef]
    [Google Scholar]
  18. Krug, R. M., Yuan, W., Noah, D. L. & Latham, A. G. ( 2003; ). Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 309, 181–189.[CrossRef]
    [Google Scholar]
  19. Lau, S. K. P., Woo, P. C. Y., Li, K. S. M., Huang, Y., Tsoi, H. W., Wong, B. H. L., Wong, S. S. Y., Leung, S. Y., Chan, K. H. & Yuen, K. Y. ( 2005; ). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102, 14040–14045.[CrossRef]
    [Google Scholar]
  20. Li, F. Q., Xiao, H., Tam, J. P. & Liu, D. X. ( 2005; ). Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus. FEBS Lett 579, 2387–2396.[CrossRef]
    [Google Scholar]
  21. Liu, M., Leibowitz, J. L., Clark, D. A., Mendicino, M., Ning, Q., Ding, J. W., D'Abreo, C., Fung, L., Marsden, P. A. & Levy, G. A. ( 2003; ). Gene transcription of fgl2 in endothelial cells is controlled by Ets-1 and Oct-1 and requires the presence of both Sp1 and Sp3. Eur J Biochem 270, 2274–2286.[CrossRef]
    [Google Scholar]
  22. Liu, M., Mendicino, M., Ning, Q., Ghanekar, A., He, W., McGilvray, I., Shalev, I., Pivato, D., Clark, D. A. & other authors ( 2006; ). Cytokine-induced hepatic apoptosis is dependent on FGL2/fibroleukin: the role of Sp1/Sp3 and STAT1/PU.1 composite cis elements. J Immunol 176, 7028–7038.[CrossRef]
    [Google Scholar]
  23. Luo, H., Ye, F., Chen, K., Shen, X. & Jiang, H. ( 2005; ). SR-rich motif plays a pivotal role in recombinant SARS coronavirus nucleocapsid protein multimerization. Biochemistry 44, 15351–15358.[CrossRef]
    [Google Scholar]
  24. Narayanan, K., Kim, K. H. & Makino, S. ( 2003; ). Characterization of N protein self-association in coronavirus ribonucleoprotein complexes. Virus Res 98, 131–140.[CrossRef]
    [Google Scholar]
  25. Narayanan, K., Huang, C., Lokugamage, K., Kamitani, W., Ikegami, T., Tseng, C.-T. K. & Makino, S. ( 2008; ). Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 82, 4471–4479.[CrossRef]
    [Google Scholar]
  26. Nicholls, J. M., Poon, L. L. M., Lee, K. C., Ng, W. F., Lai, S. T., Leung, C. Y., Chu, C. M., Hui, P. K., Mak, K. L. & other authors ( 2003; ). Lung pathology of fatal severe acute respiratory syndrome. Lancet 361, 1773–1778.[CrossRef]
    [Google Scholar]
  27. Ning, Q., Liu, M., Kongkham, P., Lai, M. M. C., Marsden, P. A., Tseng, J., Pereira, B., Belyavskyi, M., Leibowitz, J. & other authors ( 1999; ). The nucleocapsid protein of murine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. J Biol Chem 274, 9930–9936.[CrossRef]
    [Google Scholar]
  28. Ning, Q., Lakatoo, S., Liu, M. F., Yang, W. M., Wang, Z. M., Phillips, M. J. & Levy, G. A. ( 2003; ). Induction of prothrombinase FGL2 by the nucleocapsid protein of virulent mouse hepatitis virus is dependent on host hepatic nuclear factor-4α. J Biol Chem 278, 15541–15549.[CrossRef]
    [Google Scholar]
  29. Peiris, J. S. M., Lai, S. T., Poon, L. L. M., Guan, Y., Yam, L. Y. C., Lim, W., Nicholls, J., Yee, W. K. S., Yan, W. W. & other authors ( 2003; ). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325.[CrossRef]
    [Google Scholar]
  30. Qinfen, Z., Jinming, C., Xiaojun, H., Huanying, Z., Jicheng, H., Ling, F., Kunpeng, L. & Jingqiang, Z. ( 2004; ). The life cycle of SARS coronavirus in Vero E6 cells. J Med Virol 73, 332–337.[CrossRef]
    [Google Scholar]
  31. Robertson, M. ( 2003; ). Fgl2: link between hepatitis B and SARS? Drug Discov Today 8, 768–770.[CrossRef]
    [Google Scholar]
  32. Rowland, R. R., Chauhan, V., Fang, Y., Pekosz, A., Kerrigan, M. & Burton, M. D. ( 2005; ). Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in Vero cells. J Virol 79, 11507–11512.[CrossRef]
    [Google Scholar]
  33. Siu, Y.-T., Ching, Y.-P. & Jin, D.-Y. ( 2008; ). Activation of TORC1 transcriptional coactivator through MEKK1-induced phosphorylation. Mol Biol Cell 19, 4750–4761.[CrossRef]
    [Google Scholar]
  34. Siu, K.-L., Kok, K.-H., Ng, M.-H. J., Poon, V. K. M., Yuen, K.-Y., Zheng, B.-J. & Jin, D.-Y. ( 2009; ). Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3•TANK•TBK1/IKKϵ complex. J Biol Chem 284, 16202–16209.[CrossRef]
    [Google Scholar]
  35. Sun, Y., Wu, F., Sun, F. & Huang, P. ( 2008; ). Adenosine promotes IL-6 release in airway epithelia. J Immunol 180, 4173–4181.[CrossRef]
    [Google Scholar]
  36. Surjit, M., Kumar, R., Mishra, R. N., Reddy, M. K., Chow, V. T. & Lal, S. K. ( 2005; ). The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J Virol 79, 11476–11486.[CrossRef]
    [Google Scholar]
  37. Timani, K. A., Liao, Q., Ye, L., Zeng, Y., Liu, J., Zheng, Y., Ye, L., Yang, X., Lingbao, K. & other authors ( 2005; ). Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res 114, 23–34.[CrossRef]
    [Google Scholar]
  38. Tseng, C.-T. K., Tseng, J., Perrone, L., Worthy, M., Popov, V. & Peters, C. J. ( 2005; ). Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells. J Virol 79, 9470–9479.[CrossRef]
    [Google Scholar]
  39. Wurm, T., Chen, H., Hodgson, T., Britton, P., Brooks, G. & Hiscox, J. A. ( 2001; ). Localization to the nucleolus is a common feature of coronavirus nucleoproteins and the protein may disrupt host cell division. J Virol 75, 9345–9356.[CrossRef]
    [Google Scholar]
  40. Yan, X., Hao, Q., Mu, Y., Timani, K. A., Ye, L., Zhu, Y. & Wu, J. ( 2006; ). Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-κB and CCAAT/enhancer binding protein. Int J Biochem Cell Biol 38, 1417–1428.[CrossRef]
    [Google Scholar]
  41. Ye, Y., Hauns, K., Langland, J. O., Jacobs, B. L. & Hogue, B. G. ( 2007; ). Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist. J Virol 81, 2554–2563.[CrossRef]
    [Google Scholar]
  42. Yoshikawa, T., Hill, T., Peters, C. J. & Tseng, C.-T. K. ( 2009; ). Severe acute respiratory syndrome-coronavirus (SARS-CoV)-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J Virol 83, 3039–3034.[CrossRef]
    [Google Scholar]
  43. You, J., Dove, B. K., Enjuanes, L., DeDiego, M. L., Alvarez, E., Howell, G., Heinen, P., Zambon, M. & Hiscox, J. A. ( 2005; ). Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. J Gen Virol 86, 3303–3310.[CrossRef]
    [Google Scholar]
  44. You, J. H., Reed, M. L. & Hiscox, J. A. ( 2007; ). Trafficking motifs in the SARS-coronavirus nucleocapsid protein. Biochem Biophys Res Commun 358, 1015–1020.[CrossRef]
    [Google Scholar]
  45. Yue, G. G., Lau, C. B., Fung, K. P., Leung, P. C. & Ko, W. H. ( 2008; ). Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. J Ethnopharmacol 117, 92–101.[CrossRef]
    [Google Scholar]
  46. Zeng, Y., Ye, L., Zhu, S., Zheng, H., Zhao, P., Cai, W., Su, L., She, Y. & Wu, Z. ( 2008; ). The nucleocapsid protein of SARS-associated coronavirus inhibits B23 phosphorylation. Biochem Biophys Res Commun 369, 287–291.[CrossRef]
    [Google Scholar]
  47. Zhang, X., Wu, K., Wang, D., Yue, X., Song, D., Zhu, Y. & Wu, J. ( 2007; ). Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-κB. Virology 365, 324–335.[CrossRef]
    [Google Scholar]
  48. Zhao, X., Nicholls, J. M. & Chen, Y. G. ( 2008; ). Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-β signaling. J Biol Chem 283, 3272–3280.[CrossRef]
    [Google Scholar]
  49. Zúñiga, S., Sola, I., Moreno, J. L., Sabella, P., Plana-Durán, J. & Enjuanes, L. ( 2007; ). Coronavirus nucleocapsid protein is an RNA chaperone. Virology 357, 215–227.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009209-0
Loading
/content/journal/jgv/10.1099/vir.0.009209-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error