1887

Abstract

The extracellular enveloped virus (EEV) form of vaccinia virus (VACV) is surrounded by two lipid envelopes. This presents a topological problem for virus entry into cells, because a classical fusion event would only release a virion surrounded by a single envelope into the cell. Recently, we described a mechanism in which the EEV outer membrane is disrupted following interaction with glycosaminoglycans (GAGs) on the cell surface and thus allowing fusion of the inner membrane with the plasma membrane and penetration of a naked core into the cytosol. Here we show that both the B5 and A34 viral glycoproteins are required for this process. A34 is required to recruit B5 into the EEV membrane and B5 acts as a molecular switch to control EEV membrane rupture upon exposure to GAGs. Analysis of VACV strains expressing mutated B5 proteins demonstrated that the acidic stalk region between the transmembrane anchor sequence and the fourth short consensus repeat of B5 are critical for GAG-induced membrane rupture. Furthermore, the interaction between B5 and A34 can be disrupted by the addition of polyanions (GAGs) and polycations, but only the former induce membrane rupture. Based on these data we propose a revised model for EEV entry.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009092-0
2009-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/7/1582.html?itemId=/content/journal/jgv/10.1099/vir.0.009092-0&mimeType=html&fmt=ahah

References

  1. Armstrong J. A., Metz D. H., Young M. R. 1973; The mode of entry of vaccinia virus into L cells. J Gen Virol 21:533–537 [CrossRef]
    [Google Scholar]
  2. Blasco R., Sisler J. R., Moss B. 1993; Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: effect of a point mutation in the lectin homology domain of the A34R gene. J Virol 67:3319–3325
    [Google Scholar]
  3. Broyles S. S. 2003; Vaccinia virus transcription. J Gen Virol 84:2293–2303 [CrossRef]
    [Google Scholar]
  4. Carter G. C., Law M., Hollinshead M., Smith G. L. 2005; The entry of the vaccinia virus intracellular mature virion and its interactions with glycosaminoglycans. J Gen Virol 86:1279–1290 [CrossRef]
    [Google Scholar]
  5. Chang A., Metz D. H. 1976; Further investigations on the mode of entry of vaccinia virus into cells. J Gen Virol 32:275–282 [CrossRef]
    [Google Scholar]
  6. Condit R. C., Moussatche N., Traktman P. 2006; In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res 66:31–124
    [Google Scholar]
  7. Dales S. 1963; The uptake and development of vaccinia virus in strain L cells followed with labeled viral deoxyribonucleic acid. J Cell Biol 18:51–72 [CrossRef]
    [Google Scholar]
  8. Dales S., Siminovitch L. 1961; The development of vaccinia virus in Earle's L strain cells as examined by electron microscopy. J Biophys Biochem Cytol 10:475–503 [CrossRef]
    [Google Scholar]
  9. Duncan S. A., Smith G. L. 1992; Identification and characterization of an extracellular envelope glycoprotein affecting vaccinia virus egress. J Virol 66:1610–1621
    [Google Scholar]
  10. Earley A. K., Chan W. M., Ward B. M. 2008; The vaccinia virus B5 protein requires A34 for efficient intracellular trafficking from the endoplasmic reticulum to the site of wrapping and incorporation into progeny virions. J Virol 82:2161–2169 [CrossRef]
    [Google Scholar]
  11. Engelstad M., Smith G. L. 1993; The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. Virology 194:627–637 [CrossRef]
    [Google Scholar]
  12. Engelstad M., Howard S. T., Smith G. L. 1992; A constitutively expressed vaccinia gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. Virology 188:801–810 [CrossRef]
    [Google Scholar]
  13. Herrera E., Lorenzo M. M., Blasco R., Isaacs S. N. 1998; Functional analysis of vaccinia virus B5R protein: essential role in virus envelopment is independent of a large portion of the extracellular domain. J Virol 72:294–302
    [Google Scholar]
  14. Herrero-Martinez E., Roberts K. L., Hollinshead M., Smith G. L. 2005; Vaccinia virus intracellular enveloped virions move to the cell periphery on microtubules in the absence of the A36R protein. J Gen Virol 86:2961–2968 [CrossRef]
    [Google Scholar]
  15. Hollinshead M., Vanderplasschen A., Smith G. L., Vaux D. J. 1999; Vaccinia virus intracellular mature virions contain only one lipid membrane. J Virol 73:1503–1517
    [Google Scholar]
  16. Horton R. M., Cai Z. L., Ho S. N., Pease L. R. 1990; Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8:528–535
    [Google Scholar]
  17. Hughes S. J., Johnston L. H., de Carlos A., Smith G. L. 1991; Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae . J Biol Chem 266:20103–20109
    [Google Scholar]
  18. Husain M., Weisberg A. S., Moss B. 2007; Resistance of a vaccinia virus A34R deletion mutant to spontaneous rupture of the outer membrane of progeny virions on the surface of infected cells. Virology 366:424–432 [CrossRef]
    [Google Scholar]
  19. Ichihashi Y. 1996; Extracellular enveloped vaccinia virus escapes neutralization. Virology 217:478–485 [CrossRef]
    [Google Scholar]
  20. Ichihashi Y., Takahashi T., Oie M. 1994; Identification of a vaccinia virus penetration protein. Virology 202:834–843 [CrossRef]
    [Google Scholar]
  21. Isaacs S. N., Wolffe E. J., Payne L. G., Moss B. 1992; Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. J Virol 66:7217–7224
    [Google Scholar]
  22. Kotwal G. J., Moss B. 1988; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature 335:176–178 [CrossRef]
    [Google Scholar]
  23. Kotwal G. J., Isaacs S. N., McKenzie R., Frank M. M., Moss B. 1990; Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science 250:827–830 [CrossRef]
    [Google Scholar]
  24. Law M., Carter G. C., Roberts K. L., Hollinshead M., Smith G. L. 2006; Ligand-induced and nonfusogenic dissolution of a viral membrane. Proc Natl Acad Sci U S A 103:5989–5994 [CrossRef]
    [Google Scholar]
  25. Lorenzo M. M., Herrera E., Blasco R., Isaacs S. N. 1998; Functional analysis of vaccinia virus B5R protein: role of the cytoplasmic tail. Virology 252:450–457 [CrossRef]
    [Google Scholar]
  26. Mathew E., Sanderson C. M., Hollinshead M., Smith G. L. 1998; The extracellular domain of vaccinia virus protein B5R affects plaque phenotype, extracellular enveloped virus release, and intracellular actin tail formation. J Virol 72:2429–2438
    [Google Scholar]
  27. Mathew E. C., Sanderson C. M., Hollinshead R., Smith G. L. 2001; A mutational analysis of the vaccinia virus B5R protein. J Gen Virol 82:1199–1213
    [Google Scholar]
  28. McIntosh A. A., Smith G. L. 1996; Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. J Virol 70:272–281
    [Google Scholar]
  29. Mercer J., Helenius A. 2008; Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320:531–535 [CrossRef]
    [Google Scholar]
  30. Moss B. 2006; Poxvirus entry and membrane fusion. Virology 344:48–54 [CrossRef]
    [Google Scholar]
  31. Moss B. 2007; Poxviridae : the viruses and their replicaton. In Fields Virology . , 5th edn. pp 2905–2946Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A. Philadelphia, PA: Lippincott Williams & Wilkins;
  32. Parkinson J. E., Smith G. L. 1994; Vaccinia virus gene A36R encodes a Mr 43–50 K protein on the surface of extracellular enveloped virus. Virology 204:376–390 [CrossRef]
    [Google Scholar]
  33. Payne L. G. 1979; Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus. J Virol 31:147–155
    [Google Scholar]
  34. Payne L. G., Norrby E. 1978; Adsorption and penetration of enveloped and naked vaccinia virus particles. J Virol 27:19–27
    [Google Scholar]
  35. Perdiguero B., Lorenzo M. M., Blasco R. 2008; Vaccinia virus A34 glycoprotein determines the protein composition of the extracellular virus envelope. J Virol 82:2150–2160 [CrossRef]
    [Google Scholar]
  36. Roberts K. L., Smith G. L. 2008; Vaccinia virus morphogenesis and dissemination. Trends Microbiol 16:472–479
    [Google Scholar]
  37. Rodger G., Smith G. L. 2002; Replacing the SCR domains of vaccinia virus protein B5R with EGFP causes a reduction in plaque size and actin tail formation but enveloped virions are still transported to the cell surface. J Gen Virol 83:323–332
    [Google Scholar]
  38. Rottger S., Frischknecht F., Reckmann I., Smith G. L., Way M. 1999; Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J Virol 73:2863–2875
    [Google Scholar]
  39. Sanderson C. M., Frischknecht F., Way M., Hollinshead M., Smith G. L. 1998; Roles of vaccinia virus EEV-specific proteins in intracellular actin tail formation and low pH-induced cell–cell fusion. J Gen Virol 79:1415–1425
    [Google Scholar]
  40. Schmelz M., Sodeik B., Ericsson M., Wolffe E. J., Shida H., Hiller G., Griffiths G. 1994; Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J Virol 68:130–147
    [Google Scholar]
  41. Smith G. L., Vanderplasschen A., Law M. 2002; The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83:2915–2931
    [Google Scholar]
  42. Takahashi-Nishimaki F., Funahashi S., Miki K., Hashizume S., Sugimoto M. 1991; Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. Virology 181:158–164 [CrossRef]
    [Google Scholar]
  43. Townsley A. C., Moss B. 2007; Two distinct low pH steps promote entry of vaccinia virus. J Virol 81:8613–8620 [CrossRef]
    [Google Scholar]
  44. Townsley A. C., Weisberg A. S., Wagenaar T. R., Moss B. 2006; Vaccinia virus entry into cells via a low-pH-dependent endosomal pathway. J Virol 80:8899–8908 [CrossRef]
    [Google Scholar]
  45. Vanderplasschen A., Smith G. L. 1997; A novel virus binding assay using confocal microscopy: demonstration that the intracellular and extracellular vaccinia virions bind to different cellular receptors. J Virol 71:4032–4041
    [Google Scholar]
  46. Vanderplasschen A., Hollinshead M., Smith G. L. 1998; Intracellular and extracellular vaccinia virions enter cells by different mechanisms. J Gen Virol 79:877–887
    [Google Scholar]
  47. van Eijl H., Hollinshead M., Smith G. L. 2000; The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. Virology 271:26–36 [CrossRef]
    [Google Scholar]
  48. Ward B. M., Moss B. 2000; Golgi network targeting and plasma membrane internalization signals in vaccinia virus B5R envelope protein. J Virol 74:3771–3780 [CrossRef]
    [Google Scholar]
  49. Wolffe E. J., Isaacs S. N., Moss B. 1993; Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. J Virol 67:4732–4741
    [Google Scholar]
  50. Wolffe E. J., Katz E., Weisberg A., Moss B. 1997; The A34R glycoprotein gene is required for induction of specialized actin-containing microvilli and efficient cell-to-cell transmission of vaccinia virus. J Virol 71:3904–3915
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009092-0
Loading
/content/journal/jgv/10.1099/vir.0.009092-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error