1887

Abstract

The virulence of influenza A viruses depends on the activity of the viral RNA polymerase complex and viral regulatory phosphoproteins. We identified that the protein kinase C (PKC) inhibitor Gö6976 had a post-entry anti-influenza viral effect, by using a polymerase activity-based reporter assay. This inhibitory effect was observed for influenza virus-infected cells as well as for cells transiently transfected with constructs for the RNA polymerase complex. Importantly, the analysis of viral protein phosphorylation identified PKC as a kinase phosphorylating PB1 and NS1, but not PB2, PA or NP. Gö6976 was able to block PKC-specific phosphorylation . Thus, our data suggest that PKC contributes to the phosphorylation of influenza PB1 and NS1 proteins which appears to be functionally relevant for both viral RNA polymerase activity and efficient viral replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009050-0
2009-06-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/6/1392.html?itemId=/content/journal/jgv/10.1099/vir.0.009050-0&mimeType=html&fmt=ahah

References

  1. Anwar, T. & Khan, A. U. ( 2007; ). Identification of a casein kinase II phosphorylation domain in NS1 protein of H5N1 influenza virus. Bioinformation 2, 57–61.[CrossRef]
    [Google Scholar]
  2. Arrese, M. & Portela, A. ( 1996; ). Serine 3 is critical for phosphorylation at the N-terminal end of the nucleoprotein of influenza virus A/Victoria/3/75. J Virol 70, 3385–3391.
    [Google Scholar]
  3. Bonzel, L., Tenenbaum, T., Schroten, H., Schildgen, O., Schweitzer-Krantz, S. & Adams, O. ( 2008; ). Frequent detection of viral coinfection in children hospitalized with acute respiratory tract infection using a real-time polymerase chain reaction. Pediatr Infect Dis J 27, 589–594.[CrossRef]
    [Google Scholar]
  4. Bui, M., Myers, J. E. & Whittaker, G. R. ( 2002; ). Nucleo-cytoplasmic localization of influenza virus nucleoprotein depends on cell density and phosphorylation. Virus Res 84, 37–44.[CrossRef]
    [Google Scholar]
  5. Fechter, P. & Brownlee, G. G. ( 2005; ). Recognition of mRNA cap structures by viral and cellular proteins. J Gen Virol 86, 1239–1249.[CrossRef]
    [Google Scholar]
  6. Fodor, E. & Smith, M. ( 2004; ). The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol 78, 9144–9153.[CrossRef]
    [Google Scholar]
  7. Geiss, G. K., Salvatore, M., Tumpey, T. M., Carter, V. S., Wang, X., Basler, C. F., Taubenberger, J. K., Bumgarner, R. E., Palese, P. & other authors ( 2002; ). Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. Proc Natl Acad Sci U S A 99, 10736–10741.[CrossRef]
    [Google Scholar]
  8. Goekjian, P. G. & Jirousek, M. R. ( 1999; ). Protein kinase C in treatment of diseases: signal transduction pathways, inhibitors and agents in development. Curr Med Chem 6, 877–903.
    [Google Scholar]
  9. Guilligay, D., Tarendeau, F., Resa-Infante, P., Coloma, R., Crepin, T., Sehr, P., Lewis, J., Ruigrok, R. W., Ortín, J. & other authors ( 2008; ). The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol 15, 500–506.[CrossRef]
    [Google Scholar]
  10. Hale, B. G., Randall, R. E., Ortín, J. & Jackson, D. ( 2008a; ). The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89, 2359–2376.[CrossRef]
    [Google Scholar]
  11. Hale, B. G., Knebel, A., Botting, C. H., Galloway, C. S., Precious, B. L., Jackson, D., Elliott, R. M. & Randall, R. E. ( 2008b; ). CDK/ERK-mediated phosphorylation of the human influenza A virus NS1 protein at threonine-215. Virology 383, 6–11.
    [Google Scholar]
  12. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. ( 2000; ). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97, 6108–6113.[CrossRef]
    [Google Scholar]
  13. Hoffmann, H. H., Palese, P. & Shaw, M. L. ( 2008; ). Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Res 80, 124–134.[CrossRef]
    [Google Scholar]
  14. Honda, A. & Ishihama, A. ( 1997; ). The molecular anatomy of influenza virus RNA polymerase. Biol Chem 378, 483–488.
    [Google Scholar]
  15. Ludwig, S., Planz, O., Pleschka, S. & Wolff, T. ( 2003; ). Influenza virus-induced signaling cascades: targets for antiviral therapy? Trends Mol Med 9, 46–52.[CrossRef]
    [Google Scholar]
  16. Lutz, A., Dyall, J., Olivo, P. D. & Pekosz, A. ( 2005; ). Virus-inducible reporter genes as a tool for detecting and quantifying influenza A virus replication. J Virol Methods 126, 13–20.[CrossRef]
    [Google Scholar]
  17. Maier, H. J., Kashiwagi, T., Hara, K. & Brownlee, G. G. ( 2008; ). Differential role of the influenza A virus polymerase PA subunit for vRNA and cRNA promoter binding. Virology 370, 194–204.[CrossRef]
    [Google Scholar]
  18. Marion, R. M., Zurcher, T., de la Luna, S. & Ortín, J. ( 1997; ). Influenza virus NS1 protein interacts with viral transcription–replication complexes in vivo. J Gen Virol 78, 2447–2451.
    [Google Scholar]
  19. Marschall, M., Helten, A., Hechtfischer, A., Zach, A., Banaschewski, C., Hell, W. & Meier-Ewert, H. ( 1999; ). The ORF, regulated synthesis and persistence-specific variation of influenza C viral NS1 protein. Virology 253, 208–218.[CrossRef]
    [Google Scholar]
  20. Marschall, M., Stein-Gerlach, M., Freitag, M., Kupfer, R., van den Bogaard, M. & Stamminger, T. ( 2001; ). Inhibitors of human cytomegalovirus replication drastically reduce the activity of the viral protein kinase pUL97. J Gen Virol 82, 1439–1450.
    [Google Scholar]
  21. Milbradt, J., Auerochs, S. & Marschall, M. ( 2007; ). The cytomegaloviral proteins pUL50 and pUL53 are associated with the nuclear lamina and interact with cellular protein kinase C. J Gen Virol 88, 2642–2650.[CrossRef]
    [Google Scholar]
  22. Milbradt, J., Auerochs, S., Sticht, H. & Marschall, M. ( 2009; ). Cytomegaloviral proteins that associate with the nuclear lamina: components of a postulated nuclear egress complex. J Gen Virol 90, 579–590.[CrossRef]
    [Google Scholar]
  23. Neumann, G., Castrucci, M. R. & Kawaoka, Y. ( 1997; ). Nuclear import and export of influenza virus nucleoprotein. J Virol 71, 9690–9700.
    [Google Scholar]
  24. Noda, T., Sagara, H., Yen, A., Takada, A., Kida, H., Cheng, R. H. & Kawaoka, Y. ( 2006; ). Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439, 490–492.[CrossRef]
    [Google Scholar]
  25. Palese, P. & Shaw, M. L. ( 2007; ). Othomyxoviridae: the viruses and their replication. In Fields Virology, 5th edn, pp. 1647–1689. Edited by D. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  26. Poch, O., Sauvaget, I., Delarue, M. & Tordo, N. ( 1989; ). Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8, 3867–3874.
    [Google Scholar]
  27. Portela, A. & Digard, P. ( 2002; ). The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol 83, 723–734.
    [Google Scholar]
  28. Privalsky, M. L. & Penhoet, E. E. ( 1978; ). Influenza virus proteins: identity, synthesis, and modification analyzed by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A 75, 3625–3629.[CrossRef]
    [Google Scholar]
  29. Privalsky, M. L. & Penhoet, E. E. ( 1981; ). The structure and synthesis of influenza virus phosphoproteins. J Biol Chem 256, 5368–5376.
    [Google Scholar]
  30. Reinhardt, J. & Wolff, T. ( 2000; ). The influenza A virus M1 protein interacts with the cellular receptor of activated C kinase (RACK) 1 and can be phosphorylated by protein kinase C. Vet Microbiol 74, 87–100.[CrossRef]
    [Google Scholar]
  31. Root, C. N., Wills, E. G., McNair, L. L. & Whittaker, G. R. ( 2000; ). Entry of influenza viruses into cells is inhibited by a highly specific protein kinase C inhibitor. J Gen Virol 81, 2697–2705.
    [Google Scholar]
  32. Sanz-Ezquerro, J. J., Fernández Santarén, J., Sierra, T., Aragón, T., Ortega, J., Ortín, J., Smith, G. L. & Nieto, A. ( 1998; ). The PA influenza virus polymerase subunit is a phosphorylated protein. J Gen Virol 79, 471–478.
    [Google Scholar]
  33. Schleiss, M., Eickhoff, J., Auerochs, S., Leis, M., Abele, S., Rechter, S., Choi, Y., Anderson, J., Scott, G. & other authors ( 2008; ). Protein kinase inhibitors of the quinazoline class exert anti-cytomegaloviral activity in vitro and in vivo. Antiviral Res 79, 49–61.[CrossRef]
    [Google Scholar]
  34. Schregel, V., Auerochs, S., Jochmann, R., Maurer, K., Stamminger, T. & Marschall, M. ( 2007; ). Mapping of a putative dimerization domain of the cytomegaloviral protein kinase pUL97. J Gen Virol 88, 395–404.[CrossRef]
    [Google Scholar]
  35. Sieczkarski, S. B., Brown, H. A. & Whittaker, G. R. ( 2003; ). Role of protein kinase C βII in influenza virus entry via late endosomes. J Virol 77, 460–469.[CrossRef]
    [Google Scholar]
  36. Skorko, R., Summers, D. F. & Galarza, J. M. ( 1991; ). Influenza A virus in vitro transcription: roles of NS1 and NP proteins in regulating RNA synthesis. Virology 180, 668–677.[CrossRef]
    [Google Scholar]
  37. Torreira, E., Schoehn, G., Fernández, Y., Jorba, N., Ruigrok, R., Cusack, S., Ortín, J. & Llorca, O. ( 2007; ). Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. Nucleic Acids Res 35, 3774–3783.[CrossRef]
    [Google Scholar]
  38. Tumpey, T. M., Basler, C. F., Aguilar, P. V., Zeng, H., Solórzano, A., Swayne, D. E., Cox, N. J., Katz, J. M., Taubenberger, J. K. & other authors ( 2005; ). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80.[CrossRef]
    [Google Scholar]
  39. Tumpey, T. M., Maines, T. R., Van Hoeven, N., Glaser, L., Solórzano, A., Pappas, C., Cox, N. J., Swayne, D. E., Palese, P. & other authors ( 2007; ). A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315, 655–659.[CrossRef]
    [Google Scholar]
  40. Wright, P. F., Neumann, G. & Kawaoka, Y. ( 2007; ). Othomyxoviruses. In Fields Virology, 5th edn, pp. 1691–1740. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009050-0
Loading
/content/journal/jgv/10.1099/vir.0.009050-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error