Expression and processing of human immunodeficiency virus type 1 gp160 using the vesicular stomatitis virus New Jersey serotype vector system Free

Abstract

The Indiana serotype of vesicular stomatitis virus (VSV), but not the New Jersey serotype (VSV), has been widely used as a gene expression vector. In terms of prime–boost-based vaccine strategies, it would be desirable to use two different VSV serotypes to avoid immunity against the priming viral vector. Here, we report that we have applied the VSV vector system for expression of the gene of human immunodeficiency virus type 1 (HIV-1). The HIV-1 gene was inserted into the VSV vector system at two different sites: between the P and M genes (NP-gp160-MGL) and between the G and L genes (NPMG-gp160-L). The HIV-1 gene product, gp160, was efficiently expressed and processed in cells infected with either of these two recombinant VSV–HIV-1 viruses. In this study, we have investigated the applicability of the VSV vector system for foreign gene expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009019-0
2009-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1135.html?itemId=/content/journal/jgv/10.1099/vir.0.009019-0&mimeType=html&fmt=ahah

References

  1. Abraham G., Banerjee A. K. 1976; Sequential transcription of the genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A 73:1504–1508 [CrossRef]
    [Google Scholar]
  2. Black B. L., Lyles D. S. 1992; Vesicular stomatitis virus matrix protein inhibits host cell-directed transcription of target genes in vivo. J Virol 66:4058–4064
    [Google Scholar]
  3. Black B. L., Rhodes R. B., McKenzie M., Lyles D. S. 1993; The role of vesicular stomatitis virus matrix protein in inhibition of host-directed gene expression is genetically separable from its function in virus assembly. J Virol 67:4814–4821
    [Google Scholar]
  4. Black B. L., Brewer G., Lyles D. S. 1994; Effect of vesicular stomatitis virus matrix protein on host-directed translation in vivo. J Virol 68:555–560
    [Google Scholar]
  5. Blondel D., Harmison G. G., Schubert M. 1990; Role of matrix protein in cytopathogenesis of vesicular stomatitis virus. J Virol 64:1716–1725
    [Google Scholar]
  6. Egan M. A., Carruth L. M., Rowell J. F., Yu X., Siliciano R. F. 1996; Human immunodeficiency virus type 1 envelope protein endocytosis mediated by a highly conserved intrinsic internalization signal in the cytoplasmic domain of gp41 is suppressed in the presence of the Pr55 gag precursor protein. J Virol 70:6547–6556
    [Google Scholar]
  7. Egan M. A., Chong S. Y., Rose N. F., Megati S., Lopez K. J., Schadeck E. B., Johnson J. E., Masood A., Piacente P. other authors 2004; Immunogenicity of attenuated vesicular stomatitis virus vectors expressing HIV type 1 Env and SIV Gag proteins: comparison of intranasal and intramuscular vaccination routes. AIDS Res Hum Retroviruses 20:989–1004 [CrossRef]
    [Google Scholar]
  8. Ellgaard L., Molinari M., Helenius A. 1999; Setting the standards: quality control in the secretory pathway. Science 286:1882–1888 [CrossRef]
    [Google Scholar]
  9. Ellis R. J., Hemmingsen S. M. 1989; Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14:339–342 [CrossRef]
    [Google Scholar]
  10. Fields B. N., Hawkins K. 1967; Human infection with the virus of vesicular stomatitis during an epizootic. N Engl J Med 277:989–994 [CrossRef]
    [Google Scholar]
  11. Flanagan E. B., Ball L. A., Wertz G. W. 2000; Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response. J Virol 74:7895–7902 [CrossRef]
    [Google Scholar]
  12. Johnson K. M., Vogel J. E., Peralta P. H. 1966; Clinical and serological response to laboratory-acquired human infection by Indiana type vesicular stomatitis virus (VSV). Am J Trop Med Hyg 15:244–246
    [Google Scholar]
  13. Johnson J. E., Schnell M. J., Buonocore L., Rose J. K. 1997; Specific targeting to CD4+ cells of recombinant vesicular stomatitis viruses encoding human immunodeficiency virus envelope proteins. J Virol 71:5060–5068
    [Google Scholar]
  14. Kapadia S. U., Rose J. K., Lamirande E., Vogel L., Subbarao K., Roberts A. 2005; Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology 340:174–182 [CrossRef]
    [Google Scholar]
  15. Kelley J. M., Emerson S. U., Wagner R. R. 1972; The glycoprotein of vesicular stomatitis virus is the antigen that gives rise to and reacts with neutralizing antibody. J Virol 10:1231–1235
    [Google Scholar]
  16. Kim G. N., Kang C. Y. 2007; Matrix protein of VSV New Jersey serotype containing methionine to arginine substitutions at positions 48 and 51 allows near-normal host cell gene expression. Virology 357:41–53 [CrossRef]
    [Google Scholar]
  17. LaBranche C. C., Sauter M. M., Haggarty B. S., Vance P. J., Romano J., Hart T. K., Bugelski P. J., Marsh M., Hoxie J. A. 1995; A single amino acid change in the cytoplasmic domain of the simian immunodeficiency virus transmembrane molecule increases envelope glycoprotein expression on infected cells. J Virol 69:5217–5227
    [Google Scholar]
  18. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K. 1995; Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 92:4477–4481 [CrossRef]
    [Google Scholar]
  19. McGettigan J. P., Naper K., Orenstein J., Koser M., McKenna P. M., Schnell M. J. 2003; Functional human immunodeficiency virus type 1 (HIV-1) Gag–Pol or HIV-1 Gag–Pol and env expressed from a single rhabdovirus-based vaccine vector genome. J Virol 77:10889–10899 [CrossRef]
    [Google Scholar]
  20. McKenna P. M., McGettigan J. P., Pomerantz R. J., Dietzschold B., Schnell M. J. 2003; Recombinant rhabdoviruses as potential vaccines for HIV-1 and other diseases. Curr HIV Res 1:229–237 [CrossRef]
    [Google Scholar]
  21. Melki R., Gaudin Y., Blondel D. 1994; Interaction between tubulin and the viral matrix protein of vesicular stomatitis virus: possible implications in the viral cytopathic effect. Virology 202:339–347 [CrossRef]
    [Google Scholar]
  22. Moulard M., Decroly E. 2000; Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim Biophys Acta 1469121–132 [CrossRef]
    [Google Scholar]
  23. Roberts A., Kretzschmar E., Perkins A. S., Forman J., Price R., Buonocore L., Kawaoka Y., Rose J. K. 1998; Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. J Virol 72:4704–4711
    [Google Scholar]
  24. Roberts A., Buonocore L., Price R., Forman J., Rose J. K. 1999; Attenuated vesicular stomatitis viruses as vaccine vectors. J Virol 73:3723–3732
    [Google Scholar]
  25. Rose J. K. 1980; Complete intergenic and flanking gene sequences from the genome of vesicular stomatitis virus. Cell 19:415–421 [CrossRef]
    [Google Scholar]
  26. Rose J. K., Schubert M. 1987; Rhabdovirus genomes and their products. In The Rhabdoviruses pp 129–166Edited by Wagner R. R. New York: Plenum;
    [Google Scholar]
  27. Rose N. F., Roberts A., Buonocore L., Rose J. K. 2000; Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. J Virol 74:10903–10910 [CrossRef]
    [Google Scholar]
  28. Rose N. F., Marx P. A., Luckay A., Nixon D. F., Moretto W. J., Donahoe S. M., Montefiori D., Roberts A., Buonocore L., Rose J. K. 2001; An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 106:539–549 [CrossRef]
    [Google Scholar]
  29. Rowell J. F., Stanhope P. E., Siliciano R. F. 1995; Endocytosis of endogenously synthesized HIV-1 envelope protein. Mechanism and role in processing for association with class II MHC. J Immunol 155:473–488
    [Google Scholar]
  30. Schneider J., Kaaden O., Copeland T. D., Oroszlan S., Hunsmann G. 1986; Shedding and interspecies type sero-reactivity of the envelope glycopolypeptide gp120 of the human immunodeficiency virus. J Gen Virol 67:2533–2538 [CrossRef]
    [Google Scholar]
  31. Schnell M. J., Buonocore L., Kretzschmar E., Johnson E., Rose J. K. 1996a; Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci U S A 93:11359–11365 [CrossRef]
    [Google Scholar]
  32. Schnell M. J., Buonocore L., Whitt M. A., Rose J. K. 1996b; The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J Virol 70:2318–2323
    [Google Scholar]
  33. Stein B. S., Engleman E. G. 1990; Intracellular processing of the gp160 HIV-1 envelope precursor. Endoproteolytic cleavage occurs in a cis or medial compartment of the Golgi complex. J Biol Chem 265:2640–2649
    [Google Scholar]
  34. Villarreal L. P., Breindl M., Holland J. J. 1976; Determination of molar ratios of vesicular stomatitis virus induced RNA species in BHK21 cells. Biochemistry 15:1663–1667 [CrossRef]
    [Google Scholar]
  35. Wertz G. W., Perepelitsa V. P., Ball L. A. 1998; Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus. Proc Natl Acad Sci U S A 95:3501–3506 [CrossRef]
    [Google Scholar]
  36. Wertz G. W., Moudy R., Ball L. A. 2002; Adding genes to the RNA genome of vesicular stomatitis virus: positional effects on stability of expression. J Virol 76:7642–7650 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009019-0
Loading
/content/journal/jgv/10.1099/vir.0.009019-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed