1887

Abstract

Antibodies readily neutralize acute, epidemic viruses, but are less effective against more indolent pathogens such as herpesviruses. Murid herpesvirus 4 (MuHV-4) provides an accessible model for tracking the fate of antibody-exposed gammaherpesvirus virions. Glycoprotein L (gL) plays a central role in MuHV-4 entry: it allows gH to bind heparan sulfate and regulates fusion-associated conformation changes in gH and gB. However, gL is non-essential: heparan sulfate binding can also occur via gp70, and the gB–gH complex alone seems to be sufficient for membrane fusion. Here, we investigated how gL affects the susceptibility of MuHV-4 to neutralization. Immune sera neutralized gL virions more readily than gL virions, chiefly because heparan sulfate binding now depended on gp70 and was therefore easier to block. However, there were also post-binding effects. First, the downstream, gL-independent conformation of gH became a neutralization target; gL normally prevents this by holding gH in an antigenically distinct heterodimer until after endocytosis. Second, gL virions were more vulnerable to gB-directed neutralization. This covered multiple epitopes and thus seemed to reflect a general opening up of the gH–gB entry complex, which gL again normally restricts to late endosomes. gL therefore limits MuHV-4 neutralization by providing redundancy in cell binding and by keeping key elements of the virion fusion machinery hidden until after endocytosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008755-0
2009-05-01
2021-03-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1202.html?itemId=/content/journal/jgv/10.1099/vir.0.008755-0&mimeType=html&fmt=ahah

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U. H. 2000; Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974 [CrossRef]
    [Google Scholar]
  2. Atanasiu D., Whitbeck J. C., Cairns T. M., Reilly B., Cohen G. H., Eisenberg R. J. 2007; Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proc Natl Acad Sci U S A 104:18718–18723 [CrossRef]
    [Google Scholar]
  3. Avitabile E., Forghieri C., Campadelli-Fiume G. 2007; Complexes between herpes simplex virus glycoproteins gD, gB, and gH detected in cells by complementation of split enhanced green fluorescent protein. J Virol 81:11532–11537 [CrossRef]
    [Google Scholar]
  4. Borza C. M., Hutt-Fletcher L. M. 2002; Alternate replication in B cells and epithelial cells switches tropism of Epstein–Barr virus. Nat Med 8:594–599 [CrossRef]
    [Google Scholar]
  5. Browne H., Bruun B., Minson T. 2001; Plasma membrane requirements for cell fusion induced by herpes simplex virus type 1 glycoproteins gB, gD, gH and gL. J Gen Virol 82:1419–1422
    [Google Scholar]
  6. de Lima B. D., May J. S., Stevenson P. G. 2004; Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo . J Virol 78:5103–5112 [CrossRef]
    [Google Scholar]
  7. Gaspar M., Gill M. B., Lösing J. B., May J. S., Stevenson P. G. 2008; Multiple functions for ORF75c in murid herpesvirus-4 infection. PLoS One 3:e2781 [CrossRef]
    [Google Scholar]
  8. Gill M. B., Gillet L., Colaco S., May J. S., de Lima B. D., Stevenson P. G. 2006; Murine gammaherpesvirus-68 glycoprotein H–glycoprotein L complex is a major target for neutralizing monoclonal antibodies. J Gen Virol 87:1465–1475 [CrossRef]
    [Google Scholar]
  9. Gillet L., Stevenson P. G. 2007a; Evidence for a multi-protein gamma-2-herpesvirus entry complex. J Virol 81:13082–13091 [CrossRef]
    [Google Scholar]
  10. Gillet L., Stevenson P. G. 2007b; Antibody evasion by the N terminus of murid herpesvirus-4 glycoprotein B. EMBO J 26:5131–5142 [CrossRef]
    [Google Scholar]
  11. Gillet L., Gill M. B., Colaco S., Smith C. M., Stevenson P. G. 2006; Murine gammaherpesvirus-68 glycoprotein B presents a difficult neutralization target to monoclonal antibodies derived from infected mice. J Gen Virol 87:3515–3527 [CrossRef]
    [Google Scholar]
  12. Gillet L., Adler H., Stevenson P. G. 2007a; Glycosaminoglycan interactions in murine gammaherpesvirus-68 infection. PLoS One 2:e347 [CrossRef]
    [Google Scholar]
  13. Gillet L., May J. S., Colaco S., Stevenson P. G. 2007b; The murine gammaherpesvirus-68 gp150 acts as an immunogenic decoy to limit virion neutralization. PLoS One 2:e705 [CrossRef]
    [Google Scholar]
  14. Gillet L., May J. S., Colaco S., Stevenson P. G. 2007c; Glycoprotein L disruption reveals two functional forms of the murine gammaherpesvirus 68 glycoprotein H. J Virol 81:280–291 [CrossRef]
    [Google Scholar]
  15. Gillet L., May J. S., Stevenson P. G. 2007d; Post-exposure vaccination improves gammaherpesvirus neutralization. PLoS One 2:e899 [CrossRef]
    [Google Scholar]
  16. Gillet L., Colaco S., Stevenson P. G. 2008a; The murid herpesvirus-4 gH/gL binds to glycosaminoglycans. PLoS ONE 3:e1669 [CrossRef]
    [Google Scholar]
  17. Gillet L., Colaco S., Stevenson P. G. 2008b; Glycoprotein B switches conformation during murid herpesvirus 4 entry. J Gen Virol 89:1352–1363 [CrossRef]
    [Google Scholar]
  18. Gillet L., Colaco S., Stevenson P. G. 2008c; The murid herpesvirus-4 gL regulates an entry-associated conformation change in gH. PLoS One 3:e2811 [CrossRef]
    [Google Scholar]
  19. Heldwein E. E., Lou H., Bender F. C., Cohen G. H., Eisenberg R. J., Harrison S. C. 2006; Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–220 [CrossRef]
    [Google Scholar]
  20. Inada T., Chong K. T., Mims C. A. 1985; Enhancing antibodies, macrophages and virulence in mouse cytomegalovirus infection. J Gen Virol 66:871–878 [CrossRef]
    [Google Scholar]
  21. Kapadia S. B., Molina H., van Berkel V., Speck S. H., Virgin H. W. 1999; Murine gammaherpesvirus 68 encodes a functional regulator of complement activation. J Virol 73:7658–7670
    [Google Scholar]
  22. Köhler G., Milstein C. 1975; Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497 [CrossRef]
    [Google Scholar]
  23. Lopes F. B., Colaco S., May J. S., Stevenson P. G. 2004; Characterization of murine gammaherpesvirus 68 glycoprotein B. J Virol 78:13370–13375 [CrossRef]
    [Google Scholar]
  24. Maidji E., McDonagh S., Genbacev O., Tabata T., Pereira L. 2006; Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol 168:1210–1226 [CrossRef]
    [Google Scholar]
  25. Mancini G., Carbonara A. O., Heremans J. F. 1965; Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2:235–254 [CrossRef]
    [Google Scholar]
  26. Mark L., Lee W. H., Spiller O. B., Villoutreix B. O., Blom A. M. 2006; The Kaposi's sarcoma-associated herpesvirus complement control protein (KCP) binds to heparin and cell surfaces via positively charged amino acids in CCP1–2. Mol Immunol 43:1665–1675 [CrossRef]
    [Google Scholar]
  27. May J. S., Colaco S., Stevenson P. G. 2005; Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. J Virol 79:3459–3467 [CrossRef]
    [Google Scholar]
  28. Roche S., Rey F. A., Gaudin Y., Bressanelli S. 2007; Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 315:843–848 [CrossRef]
    [Google Scholar]
  29. Roop C., Hutchinson L., Johnson D. C. 1993; A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J Virol 67:2285–2297
    [Google Scholar]
  30. Rosa G. T., Gillet L., Smith C. M., de Lima B. D., Stevenson P. G. 2007; IgG Fc receptors provide an alternative infection route for murine gamma-herpesvirus-68. PLoS One 2:e560 [CrossRef]
    [Google Scholar]
  31. Stevenson P. G., Doherty P. C. 1999; Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo . J Virol 73:1075–1079
    [Google Scholar]
  32. Wang D., Shenk T. 2005; Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci U S A 102:18153–18158 [CrossRef]
    [Google Scholar]
  33. Zinkernagel R. M., Hengartner H. 2006; Protective ‘immunity’ by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called ‘immunological memory’. Immunol Rev 211:310–319 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008755-0
Loading
/content/journal/jgv/10.1099/vir.0.008755-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error