1887

Abstract

Several dsRNA bands (approx. 0.6–7 kbp in size) were recovered from tissues of mosaic-diseased fig seedlings which contained the enveloped round structures known as double membrane bodies (DMBs). analysis of a 4353 and a 1120 nt sequence from the two largest RNA segments showed homology with the polymerase and the putative glycoprotein precursor genes of negative-sense single-stranded RNA viruses of the family . Negative- and positive-sense riboprobes designed from both RNA segments hybridized to two bands of approximately 7 and 2.3 kbp in Northern blots of dsRNAs. Thus, these segments were identified as putative RNA-1 and RNA-2 of a novel virus for which the name fig mosaic virus (FMV) is proposed. Identity levels of predicted amino acids of the protein encoded by FMV RNA-1 with those of species of the family and European mountain ash ringspot-associated virus (EMERaV) were 28 and 54 %, respectively. RNA-2 showed 38 % identity at the amino acid level only with EMARaV. RNA-1 segment contained five conserved motifs (A–E) and an endonucleolytic centre of comparable genes of L RNA of bunyaviruses and EMARaV RNA-1. In a phylogenetic tree constructed with RdRp sequences, EMARaV grouped with FMV in a clade distinct from those of all bunyavirus genera. The consistent association of DMBs with mosaic symptoms and the results of molecular investigations strongly indicate that DMBs are particles of FMV, the aetiological agent of fig mosaic disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008649-0
2009-05-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1281.html?itemId=/content/journal/jgv/10.1099/vir.0.008649-0&mimeType=html&fmt=ahah

References

  1. Açikgös, S. & Döken, M. T. ( 2003; ). The determination of sampling time for dsRNA isolation of the agent of fig mosaic disease prevalent in Aegean region-Turkey. Acta Hortic 605, 307–310.
    [Google Scholar]
  2. Ahn, K.-K., Kim, K. S., Gergerich, R. C., Jensen, S. G. & Anderson, E. J. ( 1996; ). Comparative ultrastructure of double membrane-bound particles and inclusions associated with eriophyid mite-borne plant disease of unknown etiology: a potentially new group of plant viruses. J Submicrosc Cytol Pathol 28, 345–355.
    [Google Scholar]
  3. Altschul, S. F., Stephen, F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Appiano, A. & Conti, M. ( 1993; ). Cytological and cytochemical observations on leaves of fig plants infected by fig mosaic disease. G Bot Ital (Florence, Italy) 127, 300–302.
    [Google Scholar]
  5. Appiano, A., Conti, M. & Zini, N. ( 1995; ). Cytopathological study of the double-membrane bodies occurring in fig plants affected by fig mosaic disease. Acta Hortic 386, 585–592.
    [Google Scholar]
  6. Aquino, V. H., Morelli, M. & Moraes Figueirdo, L. T. ( 2003; ). Analysis of Oropouche virus L protein amino acid sequence showed the presence of an additional conserved region that could harbour an important role for the polymerase activity. Arch Virol 148, 19–28.[CrossRef]
    [Google Scholar]
  7. Astruc, N., Marcos, J. F., Macquaire, G., Candresse, T. & Pallás, V. ( 1996; ). Studies on the diagnosis of hop stunt viroid in fruit trees: identification of new hosts and application of a nucleic acid extraction procedure based on non-organic solvents. Eur J Plant Pathol 102, 837–846.[CrossRef]
    [Google Scholar]
  8. Benthack, W., Mielke, N., Buttner, C. & Muhlbach, H. P. ( 2005; ). Double-stranded RNA pattern and partial sequence data indicate plant virus infection associated with ringspot disease of European mountain ash (Sorbus aucuparia L.). Arch Virol 150, 37–52.[CrossRef]
    [Google Scholar]
  9. Blodgett, E. C. & Gömeç, C. ( 1967; ). Fig mosaic. Plant Disease Reports 51, 893–896.
    [Google Scholar]
  10. Bradfute, O. R., Whitmoyer, R. E. & Nault, R. L. ( 1970; ). Ultrastructure of plant leaf tissue infected with mite-borne viral-like particles. Proc Electron Microsc Soc Am 258, 178–179.
    [Google Scholar]
  11. Castellano, M. A., Gattoni, G., Minafra, A., Conti, M. & Martelli, G. P. ( 2007; ). Fig mosaic in Mexico and South Africa. J Plant Pathol 89, 441–444.
    [Google Scholar]
  12. Chomczynski, P. ( 1992; ). One-hour downward alkaline capillary transfer for blotting of DNA and RNA. Anal Biochem 201, 134–139.[CrossRef]
    [Google Scholar]
  13. Condit, I. J. & Horne, W. T. ( 1933; ). A mosaic of the fig in California. Phytopathology 23, 887–896.
    [Google Scholar]
  14. Coutts, R. H. A. & Livieratos, I. C. ( 2003; ). A rapid method for sequencing the 5′- and 3′-termini of double-stranded RNA viral templates using RLM-RACE. J Phytopathol 151, 525–527.[CrossRef]
    [Google Scholar]
  15. de Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D. & Goldbach, R. ( 1991; ). Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol 72, 2207–2216.[CrossRef]
    [Google Scholar]
  16. Dodds, J. A. ( 1993; ). DsRNA in diagnosis. In Diagnosis of Plant Virus Diseases, pp. 273–294. Edited by R. E. F. Matthews. Boca Raton, USA: CRC Press.
  17. Doi, Y. ( 1989; ). Fig virus S. In Directory and Dictionary of Animal, Bacterial and Plant Viruses, pp. 76. Edited by R. Hull, F. Brown & C. Payne. London, UK: Nature Publishing Group.
  18. Duijsings, D., Kormelink, R. & Goldbach, R. ( 2001; ). In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. EMBO J 20, 2545–2552.[CrossRef]
    [Google Scholar]
  19. Ebrahim-Nesbat, F. & Izadpanah, K. ( 1992; ). Virus-like particles associated with ringfleck mosaic of mountain ash and a mosaic disease of raspberry in the Bavarian forest. Eur J Forest Pathol 22, 1–10.[CrossRef]
    [Google Scholar]
  20. Elbeaino, T., Digiaro, M., De Stradis, A. & Martelli, G. P. ( 2006; ). Partial characterization of a closterovirus associated with a chlorotic mottling of fig. J Plant Pathol 88, 187–192.
    [Google Scholar]
  21. Elbeaino, T., Digiaro, M., De Stradis, A. & Martelli, G. P. ( 2007; ). Identification of a second member of the family Closteroviridae in mosaic-diseased figs. J Plant Pathol 89, 119–124.
    [Google Scholar]
  22. Felsenstein, J. ( 1989; ). phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  23. Flock, R. A. & Wallace, J. M. ( 1955; ). Transmission of fig mosaic by the eriophyid mite Aceria ficus. Phytopathology 45, 52–54.
    [Google Scholar]
  24. Foissac, X., Svanella-Dumas, L., Dulucq, M. J., Candresse, T. & Gentit, P. ( 2001; ). Polyvalent detection of fruit tree tricho, capillo and foveavirus by nested RT-PCR using degenerated and inosine containing primers (DOP RT-PCR). Acta Hortic 550, 37–44.
    [Google Scholar]
  25. Gergerich, R. C. & Kim, K. S. ( 1983; ). A description of the causal agent of rose rosette disease. Arkansas Farm Res 3, 7
    [Google Scholar]
  26. Gergerich, R. C., Kim, K. S. & Kitajima, E. W. ( 1983; ). A particle of unique morphology associated with a disease in rose in Northwest Kansas. Phytopathology 73, 500–501.
    [Google Scholar]
  27. Grbelja, J. & Eric, Z. ( 1983; ). Isolation of a potyvirus from Ficus carica L. Acta Bot Croat 42, 11–14.
    [Google Scholar]
  28. Kim, K. S. & Martin, E. M. ( 1978; ). Virus-like particles associated with yellow ringspot of redbud. Phytopathology News 12, 119
    [Google Scholar]
  29. Kumar, P. L., Duncan, G. C., Roberts, I. M., Jones, A. T. & Reddy, D. V. R. ( 2002; ). Cytopathology of Pigeonpea sterility mosaic virus in pigeonpea and Nicotiana benthamiana: similarities with those of eriophyid mite-borne agents of undefined aetiology. Ann Appl Biol 140, 87–96.[CrossRef]
    [Google Scholar]
  30. Kumar, P. L., Jones, A. T. & Reddy, D. V. R. ( 2003; ). A novel mite-transmitted virus with a divided RNA genome closely associated with pigeonpea sterility mosaic disease. Phytopathology 93, 71–81.[CrossRef]
    [Google Scholar]
  31. Marck, C. ( 1988; ). DNA Strider: a “C” programme for the fast analysis of DNA and protein sequences on the Apple Macintosh family computers. Nucleic Acids Res 16, 1829–1836.[CrossRef]
    [Google Scholar]
  32. Martelli, G. P. & Russo, M. ( 1984; ). Use of thin sectioning for visualization and identification of plant viruses. Methods in Virology 8, 143–224.
    [Google Scholar]
  33. Martelli, G. P., Castellano, M. A. & Lafortezza, R. ( 1993; ). An ultrastructural study of fig mosaic. Phytopathol Mediterr 32, 33–43.
    [Google Scholar]
  34. Mielke, N. & Muehlbach, H.-P. ( 2007; ). A novel, multipartite, negative-strand RNA virus is associated with the ringspot disease of European mountain ash (Sorbus aucuparia L.). J Gen Virol 88, 1337–1346.[CrossRef]
    [Google Scholar]
  35. Namba. S. ( 1983; ). Fig virus S. In Handbook of Plant Viruses, pp. 326–327. Edited by K. Yora, Y. Saito, Y. Doi, T. Inoue & K. Tomaru. Tokyo, Japan: Asakura Shoten.
  36. Nolasco, G. & de Sequeira, O. A. ( 1991; ). Double-stranded RNA (dsRNA) associated with fig mosaic disease. In Proceedings 4th Portuguese-Spanish Biochemistry Congress, Lisbon 1991, 5 P2-Mo.
  37. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  38. Plavšic, B. & Milicic, D. ( 1980; ). Intracellular changes in trees infected with fig mosaic. Acta Hortic 110, 281–286.
    [Google Scholar]
  39. Proeseler, G. ( 1972; ). Beziehungen zwischen Virus, Vektor und Wirstpflanze am Beispiel des Feigenmosaik-Virus und Aceria ficus Cotte (Eriophyoidea). Acta Phytopathologica Academiae Scientiarium Hungaricae 7, 179–186 (in German).
    [Google Scholar]
  40. Quacquarelli, A. ( 1971; ). Il mosaico del fico e il virus latente del Chenopodium. Phytopathol Mediterr 10, 283–286 (in Italian).
    [Google Scholar]
  41. Rott, M.E. & Jelkmann, W. ( 2001; ). Characterization and detection of several filamentous viruses of cherry: adaptation of an alternative cloning method (DOP-PCR), and modification of RNA extraction protocol. Eur J Plant Pathol 107, 411–420.[CrossRef]
    [Google Scholar]
  42. Saldarelli, P., Minafra, A., Martelli, G. P. & Walter, B. ( 1994; ). Detection of grapevine leafroll-associated closterovirus III by molecular hybridization. Plant Pathol 43, 91–96.[CrossRef]
    [Google Scholar]
  43. Serrano, L., Ramon, J., Segarra, J., Medina, V., Achón, M. A., López, M. & Juárez, M. ( 2004; ). New approach in the identification of the causal agent of fig mosaic disease. Acta Hortic 657, 559–566.
    [Google Scholar]
  44. Skare, J. M., Wijkamp, I., Rezende, J. A. M., Kitajima, E. W., Park, J. W., Desvoyes, B., Rush, C. M., Michels, G., Scholthof, K. B. G. & Scholthof, H. B. ( 2006; ). A new eriophyid mite-borne membrane-enveloped virus-like complex isolated from plants. Virology 347, 343–353.[CrossRef]
    [Google Scholar]
  45. Slykhuis, J. T. ( 1973; ). Viruses and mites. In Viruses and Invertebrates, pp 391–405. Edited by A. J. Gibbs. Amsterdam, The Netherlands: North Holland Publishing Co.
  46. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008649-0
Loading
/content/journal/jgv/10.1099/vir.0.008649-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error