1887

Abstract

Interference with dendritic cell (DC) maturation and function is considered to be central to measles virus (MV)-induced immunosuppression. Temporally ordered production of chemokines and switches in chemokine receptor expression are essential for pathogen-driven DC maturation as they are prerequisites for chemotaxis and T cell recruitment. We found that MV infection of immature monocyte-derived DCs induced transcripts specific for CCL-1, -2, -3, -5, -17 and -22, CXCL-10 and CXCL-11, yet did not induce CXCL-8 (interleukin-8) and CCL-20 at the mRNA and protein level. Within 24 h post-infection, T cell attraction was not detectably impaired by these cells. MV infection failed to promote the switch from CCR5 to CCR7 expression and this correlated with chemotactic responses of MV-matured DC cultures to CCL-3 rather than to CCL-19. Moreover, the chemotaxis of MV-infected DCs to either chemokine was compromised, indicating that MV also interferes with this property independently of chemokine receptor modulation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008581-0
2009-04-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/4/909.html?itemId=/content/journal/jgv/10.1099/vir.0.008581-0&mimeType=html&fmt=ahah

References

  1. Ardeshna, K. M., Pizzey, A. R., Walker, S. J., Devereux, S. & Khwaja, A. ( 2002; ). The upregulation of CC chemokine receptor 7 and the increased migration of maturing dendritic cells to macrophage inflammatory protein 3β and secondary lymphoid chemokine is mediated by the p38 stress-activated protein kinase pathway. Br J Haematol 119, 826–829.[CrossRef]
    [Google Scholar]
  2. Bieback, K., Lien, E., Klagge, I. M., Avota, E., Schneider-Schaulies, J., Duprex, W. P., Wagner, H., Kirschning, C. J., ter Meulen, V. & Schneider-Schaulies, S. ( 2002; ). Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76, 8729–8736.[CrossRef]
    [Google Scholar]
  3. Brown, D. D., Rima, B. K., Allen, I. V., Baron, M. D., Banyard, A. C., Barrett, T. & Duprex, W. P. ( 2005; ). Rational attenuation of a morbillivirus by modulating the activity of the RNA-dependent RNA polymerase. J Virol 79, 14330–14338.[CrossRef]
    [Google Scholar]
  4. Caparrós, E., Munoz, P., Sierra-Filardi, E., Serrano-Gómez, D., Puig-Kröger, A., Rodríguez-Fernández, J. L., Mellado, M., Sancho, J., Zubiaur, M. & Corbí, A. L. ( 2006; ). DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 107, 3950–3958.[CrossRef]
    [Google Scholar]
  5. Caux, C., Vanbervliet, B., Massacrier, C., Ait-Yahia, S., Vaure, C., Chemin, K., Dieu-Nosjean And, M. C. & Vicari, A. ( 2002; ). Regulation of dendritic cell recruitment by chemokines. Transplantation 73, S7–S11.[CrossRef]
    [Google Scholar]
  6. Condack, C., Grivel, J. C., Devaux, P., Margolis, L. & Cattaneo, R. ( 2007; ). Measles virus vaccine attenuation: suboptimal infection of lymphatic tissue and tropism alteration. J Infect Dis 196, 541–549.[CrossRef]
    [Google Scholar]
  7. D'Amico, G., Frascaroli, G., Bianchi, G., Transidico, P., Doni, A., Vecchi, A., Sozzani, S., Allavena, P. & Mantovani, A. ( 2000; ). Uncoupling of inflammatory chemokine receptors by IL-10: generation of functional decoys. Nat Immunol 1, 387–391.[CrossRef]
    [Google Scholar]
  8. de Swart, R. L., Ludlow, M., de Witte, L., Yanagi, Y., van Amerongen, G., McQuaid, S., Yüksel, S., Geijtenbeek, T. B., Duprex, W. P. & Osterhaus, A. D. ( 2007; ). Predominant infection of CD150(+) lymphocytes and dendritic cells during measles virus infection of Macaques. PLoS Pathog 3, e178 [CrossRef]
    [Google Scholar]
  9. de Witte, L., Abt, M., Schneider-Schaulies, S., van Kooyk, Y. & Geijtenbeek, T. B. ( 2006; ). Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80, 3477–3486.[CrossRef]
    [Google Scholar]
  10. Dittmar, S., Harms, H., Runkler, N., Maisner, A., Kim, K. S. & Schneider-Schaulies, J. ( 2008; ). Measles virus-induced block of transendothelial migration of T lymphocytes and infection-mediated virus spread across endothelial cell barriers. J Virol 82, 11273–11282.[CrossRef]
    [Google Scholar]
  11. Dubois, B., Lamy, P. J., Chemin, K., Lachaux, A. & Kaiserlian, D. ( 2001; ). Measles virus exploits dendritic cells to suppress CD4+ T-cell proliferation via expression of surface viral glycoproteins independently of T-cell trans-infection. Cell Immunol 214, 173–183.[CrossRef]
    [Google Scholar]
  12. Fugier-Vivier, I., Servet-Delprat, C., Rivailler, P., Rissoan, M., Liu, Y. J. & Rabourdin-Combe, C. ( 1997; ). Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186, 813–823.[CrossRef]
    [Google Scholar]
  13. Geissmann, F., Dieu-Nosjean, M. C., Dezutter, C., Valladeau, J., Kayal, S., Leborgne, M., Brousse, N., Saeland, S. & Davoust, J. ( 2002; ). Accumulation of immature Langerhans cells in human lymph nodes draining chronically inflamed skin. J Exp Med 196, 417–430.[CrossRef]
    [Google Scholar]
  14. Griffin, D. E., Ward, B. J. & Esolen, L. M. ( 1994; ). Pathogenesis of measles virus infection: an hypothesis for altered immune responses. J Infect Dis 170, S24–S31.[CrossRef]
    [Google Scholar]
  15. Gringhuis, S. I., den Dunnen, J., Litjens, M., van Het Hof, B., van Kooyk, Y. & Geijtenbeek, T. B. ( 2007; ). C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26, 605–616.[CrossRef]
    [Google Scholar]
  16. Grosjean, I., Caux, C., Bella, C., Berger, I., Wild, F., Banchereau, J. & Kaiserlian, D. ( 1997; ). Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 186, 801–812.[CrossRef]
    [Google Scholar]
  17. Hegde, S., Pahne, J. & Smola-Hess, S. ( 2004; ). Novel immunosuppressive properties of interleukin-6 in dendritic cells: inhibition of NF-κB binding activity and CCR7 expression. FASEB J 18, 1439–1441.
    [Google Scholar]
  18. Hodges, A., Sharrocks, K., Edelmann, M., Baban, D., Moris, A., Schwartz, O., Drakesmith, H., Davies, K., Kessler, B. & other authors ( 2007; ). Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8, 569–577.[CrossRef]
    [Google Scholar]
  19. Hopken, U. E., Foss, H. D., Meyer, D., Hinz, M., Leder, K., Stein, H. & Lipp, M. ( 2002; ). Up-regulation of the chemokine receptor CCR7 in classical but not in lymphocyte-predominant Hodgkin disease correlates with distinct dissemination of neoplastic cells in lymphoid organs. Blood 99, 1109–1116.[CrossRef]
    [Google Scholar]
  20. Humrich, J. Y., Thumann, P., Greiner, S., Humrich, J. H., Averbeck, M., Schwank, C., Kämpgen, E., Schuler, G. & Jenne, L. ( 2007; ). Vaccinia virus impairs directional migration and chemokine receptor switch of human dendritic cells. Eur J Immunol 37, 954–965.[CrossRef]
    [Google Scholar]
  21. Kaiserlian, D., Grosjean, I. & Caux, C. ( 1997; ). Infection of human dendritic cells by measles virus induces immune suppression. Adv Exp Med Biol 417, 421–423.
    [Google Scholar]
  22. Kerdiles, Y. M., Sellin, C. I., Druelle, J. & Horvat, B. ( 2006; ). Immunosuppression caused by measles virus: role of viral proteins. Rev Med Virol 16, 49–63.[CrossRef]
    [Google Scholar]
  23. Klagge, I. M., ter Meulen, V. & Schneider-Schaulies, S. ( 2000; ). Measles virus-induced promotion of dendritic cell maturation by soluble mediators does not overcome the immunosuppressive activity of viral glycoproteins on the cell surface. Eur J Immunol 30, 2741–2750.[CrossRef]
    [Google Scholar]
  24. Klagge, I. M., Abt, M., Fries, B. & Schneider-Schaulies, S. ( 2004; ). Impact of measles virus dendritic-cell infection on Th-cell polarization in vitro. J Gen Virol 85, 3239–3247.[CrossRef]
    [Google Scholar]
  25. Lammermann, T., Bader, B. L., Monkley, S. J., Worbs, T., Wedlich-Soldner, R., Hirsch, K., Keller, M., Forster, R., Critchley, D. R. & other authors ( 2008; ). Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55.[CrossRef]
    [Google Scholar]
  26. Mathas, S., Hinz, M., Anagnostopoulos, I., Krappmann, D., Lietz, A., Jundt, F., Bommert, K., Mechta-Grigoriou, F., Stein, H. & other authors ( 2002; ). Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-κB. EMBO J 21, 4104–4113.[CrossRef]
    [Google Scholar]
  27. Minagawa, H., Tanaka, K., Ono, N., Tatsuo, H. & Yanagi, Y. ( 2001; ). Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82, 2913–2917.
    [Google Scholar]
  28. Moutaftsi, M., Brennan, P., Spector, S. A. & Tabi, Z. ( 2004; ). Impaired lymphoid chemokine-mediated migration due to a block on the chemokine receptor switch in human cytomegalovirus-infected dendritic cells. J Virol 78, 3046–3054.[CrossRef]
    [Google Scholar]
  29. Muller, N., Avota, E., Schneider-Schaulies, J., Harms, H., Krohne, G. & Schneider-Schaulies, S. ( 2006; ). Measles virus contact with T cells impedes cytoskeletal remodeling associated with spreading, polarization, and CD3 clustering. Traffic 7, 849–858.[CrossRef]
    [Google Scholar]
  30. Ohl, L., Mohaupt, M., Czeloth, N., Hintzen, G., Kiafard, Z., Zwirner, J., Blankenstein, T., Henning, G. & Forster, R. ( 2004; ). CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288.[CrossRef]
    [Google Scholar]
  31. Padovan, E., Spagnoli, G. C., Ferrantini, M. & Heberer, M. ( 2002; ). IFN-α2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J Leukoc Biol 71, 669–676.
    [Google Scholar]
  32. Piccioli, D., Tavarini, S., Borgogni, E., Steri, V., Nuti, S., Sammicheli, C., Bardelli, M., Montagna, D., Locatelli, F. & Wack, A. ( 2007; ). Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood 109, 5371–5379.[CrossRef]
    [Google Scholar]
  33. Piqueras, B., Connolly, J., Freitas, H., Palucka, A. K. & Banchereau, J. ( 2006; ). Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood 107, 2613–2618.[CrossRef]
    [Google Scholar]
  34. Pollara, G., Kwan, A., Newton, P. J., Handley, M. E., Chain, B. M. & Katz, D. R. ( 2005; ). Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol 86, 187–204.[CrossRef]
    [Google Scholar]
  35. Prechtel, A. T., Turza, N. M., Kobelt, D. J., Eisemann, J. I., Coffin, R. S., McGrath, Y., Hacker, C., Ju, X., Zenke, M. & Steinkasserer, A. ( 2005; ). Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. J Gen Virol 86, 1645–1657.[CrossRef]
    [Google Scholar]
  36. Real, E., Kaiser, A., Raposo, G., Amara, A., Nardin, A., Trautmann, A. & Donnadieu, E. ( 2004; ). Immature dendritic cells (DCs) use chemokines and intercellular adhesion molecule (ICAM)-1, but not DC-specific ICAM-3-grabbing nonintegrin, to stimulate CD4+ T cells in the absence of exogenous antigen. J Immunol 173, 50–60.[CrossRef]
    [Google Scholar]
  37. Sabatté, J., Maggini, J., Nahmod, K., Amaral, M. M., Martínez, D., Salamone, G., Ceballos, A., Giordano, M., Vermeulen, M. & Geffner, J. ( 2007; ). Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine Growth Factor Rev 18, 5–17.[CrossRef]
    [Google Scholar]
  38. Salentin, R., Gemsa, D., Sprenger, H. & Kaufmann, A. ( 2003; ). Chemokine receptor expression and chemotactic responsiveness of human monocytes after influenza A virus infection. J Leukoc Biol 74, 252–259.[CrossRef]
    [Google Scholar]
  39. Sallusto, F., Schaerli, P., Loetscher, P., Schaniel, C., Lenig, D., Mackay, C. R., Qin, S. & Lanzavecchia, A. ( 1998; ). Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28, 2760–2769.[CrossRef]
    [Google Scholar]
  40. Schneider-Schaulies, S. & Dittmer, U. ( 2006; ). Silencing T cells or T-cell silencing: concepts in virus-induced immunosuppression. J Gen Virol 87, 1423–1438.[CrossRef]
    [Google Scholar]
  41. Schneider-Schaulies, S. & ter Meulen, V. ( 2002; ). Modulation of immune functions by measles virus. Springer Semin Immunopathol 24, 127–148.[CrossRef]
    [Google Scholar]
  42. Schneider-Schaulies, S., Klagge, I. M. & ter Meulen, V. ( 2003; ). Dendritic cells and measles virus infection. Curr Top Microbiol Immunol 276, 77–101.
    [Google Scholar]
  43. Schnorr, J. J., Xanthakos, S., Keikavoussi, P., Kampgen, E., ter Meulen, V. & Schneider-Schaulies, S. ( 1997; ). Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression. Proc Natl Acad Sci U S A 94, 5326–5331.[CrossRef]
    [Google Scholar]
  44. Servet-Delprat, C., Vidalain, P. O., Bausinger, H., Manie, S., Le Deist, F., Azocar, O., Hanau, D., Fischer, A. & Rabourdin-Combe, C. ( 2000; ). Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. J Immunol 164, 1753–1760.[CrossRef]
    [Google Scholar]
  45. Servet-Delprat, C., Vidalain, P. O., Valentin, H. & Rabourdin-Combe, C. ( 2003; ). Measles virus and dendritic cell functions: how specific response cohabits with immunosuppression. Curr Top Microbiol Immunol 276, 103–123.
    [Google Scholar]
  46. Shi, G., Partida-Sánchez, S., Misra, R. S., Tighe, M., Borchers, M. T., Lee, J. J., Simon, M. I. & Lund, F. E. ( 2007; ). Identification of an alternative Gα q-dependent chemokine receptor signal transduction pathway in dendritic cells and granulocytes. J Exp Med 204, 2705–2718.[CrossRef]
    [Google Scholar]
  47. Shingai, M., Ebihara, T., Begum, N. A., Kato, A., Honma, T., Matsumoto, K., Saito, H., Ogura, H., Matsumoto, M. & Seya, T. ( 2007; ). Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. J Immunol 179, 6123–6133.[CrossRef]
    [Google Scholar]
  48. Shishkova, Y., Harms, H., Krohne, G., Avota, E. & Schneider-Schaulies, S. ( 2007; ). Immune synapses formed with measles virus-infected dendritic cells are unstable and fail to sustain T cell activation. Cell Microbiol 9, 1974–1986.[CrossRef]
    [Google Scholar]
  49. Sozzani, S., Allavena, P., D'Amico, G., Luini, W., Bianchi, G., Kataura, M., Imai, T., Yoshie, O., Bonecchi, R. & Mantovani, A. ( 1998; ). Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161, 1083–1086.
    [Google Scholar]
  50. Steinman, R. M., Granelli-Piperno, A., Pope, M., Trumpfheller, C., Ignatius, R., Arrode, G., Racz, P. & Tenner-Racz, K. ( 2003; ). The interaction of immunodeficiency viruses with dendritic cells. Curr Top Microbiol Immunol 276, 1–30.
    [Google Scholar]
  51. van Lieshout, A. W., van der Voort, R., le Blanc, L. M., Roelofs, M. F., Schreurs, B. W., van Riel, P. L., Adema, G. J. & Radstake, T. R. ( 2006; ). Novel insights in the regulation of CCL18 secretion by monocytes and dendritic cells via cytokines, toll-like receptors and rheumatoid synovial fluid. BMC Immunol 7, 23 [CrossRef]
    [Google Scholar]
  52. Varani, S., Frascaroli, G., Homman-Loudiyi, M., Feld, S., Landini, M. P. & Soderberg-Naucler, C. ( 2005; ). Human cytomegalovirus inhibits the migration of immature dendritic cells by down-regulating cell-surface CCR1 and CCR5. J Leukoc Biol 77, 219–228.
    [Google Scholar]
  53. Wesa, A. & Galy, A. ( 2002; ). Increased production of pro-inflammatory cytokines and enhanced T cell responses after activation of human dendritic cells with IL-1 and CD40 ligand. BMC Immunol 3, 14 [CrossRef]
    [Google Scholar]
  54. Zilliox, M. J., Parmigiani, G. & Griffin, D. E. ( 2006; ). Gene expression patterns in dendritic cells infected with measles virus compared with other pathogens. Proc Natl Acad Sci U S A 103, 3363–3368.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008581-0
Loading
/content/journal/jgv/10.1099/vir.0.008581-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error