1887

Abstract

The human cytomegalovirus (CMV) US2–US11 genomic region contains a cluster of genes whose products interfere with antigen presentation by the major histocompatibility complex (MHC) proteins. Although included in this cluster, the US9 gene encodes a glycoprotein that does not affect MHC activity and whose function is still largely uncharacterized. An analysis of the US9 amino-acid sequence uncovered the presence of an N-terminal signal sequence (SS) and a C-terminal transmembrane domain containing the specific hallmarks of known mitochondrial localization sequences (MLS). Expression of full-length US9 and of US9 deletion mutants fused to GFP revealed that the N-terminal SS mediates US9 targeting to the endoplasmic reticulum (ER) and that the C-terminal MLS is both necessary and sufficient to direct US9 to mitochondria in the absence of a functional SS. This dual localization suggested a possible role for US9 in protection from apoptosis triggered by ER-to-mitochondria signalling. Fibroblasts infected with the US2–US11 deletion mutant virus RV798 or with the parental strain AD169ATCC were equally susceptible to death triggered by exposure to tumour necrosis factor (TNF)-, tunicamycin, thapsigargin, brefeldin A, lonidamine and carbonyl cyanide -chloro phenyl hydrazone, but were 1.6-fold more sensitive to apoptosis induced by hygromycin B. Expression of US9 in human embryonic kidney 293T cells or in fibroblasts, however, did not protect cells from hygromycin B-mediated death. Together, these results classify US9 as the first CMV-encoded protein to contain an N-terminal SS and a C-terminal MLS, and suggest a completely novel role for this protein during infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008466-0
2009-05-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1172.html?itemId=/content/journal/jgv/10.1099/vir.0.008466-0&mimeType=html&fmt=ahah

References

  1. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. ( 2004; ). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.[CrossRef]
    [Google Scholar]
  2. Borgese, N., D'Arrigo, A., De Silvestris, M. & Pietrini, G. ( 1993; ). NADH-cytochrome b5 reductase and cytochrome b5. The problem of posttranslational targeting to the endoplasmic reticulum. Subcell Biochem 21, 313–341.
    [Google Scholar]
  3. Borgese, N., Brambillasca, S. & Colombo, S. ( 2007; ). How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol 19, 368–375.[CrossRef]
    [Google Scholar]
  4. Bozidis, P., Williamson, C. D. & Colberg-Poley, A. M. ( 2008; ). Mitochondrial and secretory human cytomegalovirus UL37 proteins traffic into mitochondrion-associated membranes of human cells. J Virol 82, 2715–2726.[CrossRef]
    [Google Scholar]
  5. Colberg-Poley, A. M., Patel, M. B., Erezo, D. P. & Slater, J. E. ( 2000; ). Human cytomegalovirus UL37 immediate-early regulatory proteins traffic through the secretory apparatus and to mitochondria. J Gen Virol 81, 1779–1789.
    [Google Scholar]
  6. Emanuelsson, O., Nielsen, H., Brunak, S. & von Heijne, G. ( 2000; ). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300, 1005–1016.[CrossRef]
    [Google Scholar]
  7. Falk, C. S., Mach, M., Schendel, D. J., Weiss, E. H., Hilgert, I. & Hahn, G. ( 2002; ). NK cell activity during human cytomegalovirus infection is dominated by US2–11-mediated HLA class I down-regulation. J Immunol 169, 3257–3266.[CrossRef]
    [Google Scholar]
  8. Hegde, N. R., Tomazin, R. A., Wisner, T. W., Dunn, C., Boname, J. M., Lewinsohn, D. M. & Johnson, D. C. ( 2002; ). Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation. J Virol 76, 10929–10941.[CrossRef]
    [Google Scholar]
  9. Hegde, N. R., Chevalier, M. S., Wisner, T. W., Denton, M. C., Shire, K., Frappier, L. & Johnson, D. C. ( 2006; ). The role of BiP in endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain induced by cytomegalovirus proteins. J Biol Chem 281, 20910–20919.[CrossRef]
    [Google Scholar]
  10. Hertel, L. & Mocarski, E. S. ( 2004; ). Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of pseudomitosis independent of US28 function. J Virol 78, 11988–12011.[CrossRef]
    [Google Scholar]
  11. Hertel, L., Lacaille, V. G., Strobl, H., Mellins, E. D. & Mocarski, E. S. ( 2003; ). Susceptibility of immature and mature Langerhans cell-type dendritic cells to infection and immunomodulation by human cytomegalovirus. J Virol 77, 7563–7574.[CrossRef]
    [Google Scholar]
  12. Hertel, L., Chou, S. & Mocarski, E. S. ( 2007; ). Viral and cell cycle-regulated kinases in cytomegalovirus-induced pseudomitosis and replication. PLoS Pathog 3, e6 [CrossRef]
    [Google Scholar]
  13. Hetz, C. & Glimcher, L. ( 2008; ). The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol 18, 38–44.[CrossRef]
    [Google Scholar]
  14. Huber, M. T., Tomazin, R., Wisner, T., Boname, J. & Johnson, D. C. ( 2002; ). Human cytomegalovirus US7, US8, US9, and US10 are cytoplasmic glycoproteins, not found at cell surfaces, and US9 does not mediate cell-to-cell spread. J Virol 76, 5748–5758.[CrossRef]
    [Google Scholar]
  15. Jones, D. T. ( 2007; ). Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23, 538–544.[CrossRef]
    [Google Scholar]
  16. Jones, T. R. & Muzithras, V. P. ( 1992; ). A cluster of dispensable genes within the human cytomegalovirus genome short component: IRS1, US1 through US5, and the US6 family. J Virol 66, 2541–2546.
    [Google Scholar]
  17. Jones, T. R., Muzithras, V. P. & Gluzman, Y. ( 1991; ). Replacement mutagenesis of the human cytomegalovirus genome: US10 and US11 gene products are nonessential. J Virol 65, 5860–5872.
    [Google Scholar]
  18. Kanaji, S., Iwahashi, J., Kida, Y., Sakaguchi, M. & Mihara, K. ( 2000; ). Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J Cell Biol 151, 277–288.[CrossRef]
    [Google Scholar]
  19. Kollert-Jons, A., Bogner, E. & Radsak, K. ( 1991; ). A 15-kilobase-pair region of the human cytomegalovirus genome which includes US1 through US13 is dispensable for growth in cell culture. J Virol 65, 5184–5189.
    [Google Scholar]
  20. Kutay, U., Hartmann, E. & Rapoport, T. A. ( 1993; ). A class of membrane proteins with a C-terminal anchor. Trends Cell Biol 3, 72–75.[CrossRef]
    [Google Scholar]
  21. Kyte, J. & Doolittle, R. F. ( 1982; ). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–132.[CrossRef]
    [Google Scholar]
  22. Lin, A., Xu, H. & Yan, W. ( 2007; ). Modulation of HLA expression in human cytomegalovirus immune evasion. Cell Mol Immunol 4, 91–98.
    [Google Scholar]
  23. Maidji, E., Tugizov, S., Jones, T., Zheng, Z. & Pereira, L. ( 1996; ). Accessory human cytomegalovirus glycoprotein US9 in the unique short component of the viral genome promotes cell-to-cell transmission of virus in polarized epithelial cells. J Virol 70, 8402–8410.
    [Google Scholar]
  24. Maidji, E., Tugizov, S., Abenes, G., Jones, T. & Pereira, L. ( 1998; ). A novel human cytomegalovirus glycoprotein, gpUS9, which promotes cell-to-cell spread in polarized epithelial cells, colocalizes with the cytoskeletal proteins E-cadherin and F-actin. J Virol 72, 5717–5727.
    [Google Scholar]
  25. Martoglio, B. & Dobberstein, B. ( 1998; ). Signal sequences: more than just greasy peptides. Trends Cell Biol 8, 410–415.[CrossRef]
    [Google Scholar]
  26. Mavinakere, M. S. & Colberg-Poley, A. M. ( 2004; ). Dual targeting of the human cytomegalovirus UL37 exon 1 protein during permissive infection. J Gen Virol 85, 323–329.[CrossRef]
    [Google Scholar]
  27. McCormick, A. L. ( 2008; ). Control of apoptosis by human cytomegalovirus. Curr Top Microbiol Immunol 325, 281–295.
    [Google Scholar]
  28. McCormick, A. L., Smith, V. L., Chow, D. & Mocarski, E. S. ( 2003; ). Disruption of mitochondrial networks by the human cytomegalovirus UL37 gene product viral mitochondrion-localized inhibitor of apoptosis. J Virol 77, 631–641.[CrossRef]
    [Google Scholar]
  29. McCormick, A. L., Meiering, C. D., Smith, G. B. & Mocarski, E. S. ( 2005; ). Mitochondrial cell death suppressors carried by human and murine cytomegalovirus confer resistance to proteasome inhibitor-induced apoptosis. J Virol 79, 12205–12217.[CrossRef]
    [Google Scholar]
  30. Miller, A. D. & Rosman, G. J. ( 1989; ). Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–982, 984–986, 989–990.
    [Google Scholar]
  31. Mocarski, E. S., Shenk, T. & Pass, R. F. ( 2007; ). Cytomegaloviruses. In Fields Virology, 5th edn, pp. 2701–2772. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  32. Moorman, N. J., Cristea, I. M., Terhune, S. S., Rout, M. P., Chait, B. T. & Shenk, T. ( 2008; ). Human cytomegalovirus protein UL38 inhibits host cell stress responses by antagonizing the tuberous sclerosis protein complex. Cell Host Microbe 3, 253–262.[CrossRef]
    [Google Scholar]
  33. Nakai, K. & Horton, P. ( 1999; ). psort: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24, 34–36.[CrossRef]
    [Google Scholar]
  34. Pelham, H. R. ( 1990; ). The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci 15, 483–486.[CrossRef]
    [Google Scholar]
  35. Pereira, L., Maidji, E., Tugizov, S. & Jones, T. ( 1995; ). Deletion mutants in human cytomegalovirus glycoprotein US9 are impaired in cell–cell transmission and in altering tight junctions of polarized human retinal pigment epithelial cells. Scand J Infect Dis Suppl 99, 82–87.
    [Google Scholar]
  36. Rapaport, D. ( 2003; ). Finding the right organelle. Targeting signals in mitochondrial outer-membrane proteins. EMBO Rep 4, 948–952.[CrossRef]
    [Google Scholar]
  37. Reeves, M. B., Davies, A. A., McSharry, B. P., Wilkinson, G. W. & Sinclair, J. H. ( 2007; ). Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316, 1345–1348.[CrossRef]
    [Google Scholar]
  38. Sinzger, C., Hahn, G., Digel, M., Katona, R., Sampaio, K. L., Messerle, M., Hengel, H., Koszinowski, U., Brune, W. & Adler, B. ( 2008; ). Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89, 359–368.[CrossRef]
    [Google Scholar]
  39. Skaletskaya, A., Bartle, L. M., Chittenden, T., McCormick, A. L., Mocarski, E. S. & Goldmacher, V. S. ( 2001; ). A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A 98, 7829–7834.[CrossRef]
    [Google Scholar]
  40. Tenney, D. J. & Colberg-Poley, A. M. ( 1991; ). Human cytomegalovirus UL36–38 and US3 immediate-early genes: temporally regulated expression of nuclear, cytoplasmic, and polysome-associated transcripts during infection. J Virol 65, 6724–6734.
    [Google Scholar]
  41. Terhune, S., Torigoi, E., Moorman, N., Silva, M., Qian, Z., Shenk, T. & Yu, D. ( 2007; ). Human cytomegalovirus UL38 protein blocks apoptosis. J Virol 81, 3109–3123.[CrossRef]
    [Google Scholar]
  42. Thomenius, M. J. & Distelhorst, C. W. ( 2003; ). Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J Cell Sci 116, 4493–4499.[CrossRef]
    [Google Scholar]
  43. Weston, K. ( 1988; ). An enhancer element in the short unique region of human cytomegalovirus regulates the production of a group of abundant immediate early transcripts. Virology 162, 406–416.[CrossRef]
    [Google Scholar]
  44. Weston, K. & Barrell, B. G. ( 1986; ). Sequence of the short unique region, short repeats, and part of the long repeats of human cytomegalovirus. J Mol Biol 192, 177–208.[CrossRef]
    [Google Scholar]
  45. Yamanishi, K. & Rapp, F. ( 1979; ). Induction of host DNA synthesis and DNA polymerase by DNA-negative temperature-sensitive mutants of human cytomegalovirus. Virology 94, 237–241.[CrossRef]
    [Google Scholar]
  46. Young, J. C., Hoogenraad, N. J. & Hartl, F. U. ( 2003; ). Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008466-0
Loading
/content/journal/jgv/10.1099/vir.0.008466-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error