1887

Abstract

The human cytomegalovirus (CMV) US2–US11 genomic region contains a cluster of genes whose products interfere with antigen presentation by the major histocompatibility complex (MHC) proteins. Although included in this cluster, the US9 gene encodes a glycoprotein that does not affect MHC activity and whose function is still largely uncharacterized. An analysis of the US9 amino-acid sequence uncovered the presence of an N-terminal signal sequence (SS) and a C-terminal transmembrane domain containing the specific hallmarks of known mitochondrial localization sequences (MLS). Expression of full-length US9 and of US9 deletion mutants fused to GFP revealed that the N-terminal SS mediates US9 targeting to the endoplasmic reticulum (ER) and that the C-terminal MLS is both necessary and sufficient to direct US9 to mitochondria in the absence of a functional SS. This dual localization suggested a possible role for US9 in protection from apoptosis triggered by ER-to-mitochondria signalling. Fibroblasts infected with the US2–US11 deletion mutant virus RV798 or with the parental strain AD169ATCC were equally susceptible to death triggered by exposure to tumour necrosis factor (TNF)-, tunicamycin, thapsigargin, brefeldin A, lonidamine and carbonyl cyanide -chloro phenyl hydrazone, but were 1.6-fold more sensitive to apoptosis induced by hygromycin B. Expression of US9 in human embryonic kidney 293T cells or in fibroblasts, however, did not protect cells from hygromycin B-mediated death. Together, these results classify US9 as the first CMV-encoded protein to contain an N-terminal SS and a C-terminal MLS, and suggest a completely novel role for this protein during infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008466-0
2009-05-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1172.html?itemId=/content/journal/jgv/10.1099/vir.0.008466-0&mimeType=html&fmt=ahah

References

  1. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795 [CrossRef]
    [Google Scholar]
  2. Borgese N., D'Arrigo A., De Silvestris M., Pietrini G. 1993; NADH-cytochrome b5 reductase and cytochrome b5. The problem of posttranslational targeting to the endoplasmic reticulum. Subcell Biochem 21:313–341
    [Google Scholar]
  3. Borgese N., Brambillasca S., Colombo S. 2007; How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol 19:368–375 [CrossRef]
    [Google Scholar]
  4. Bozidis P., Williamson C. D., Colberg-Poley A. M. 2008; Mitochondrial and secretory human cytomegalovirus UL37 proteins traffic into mitochondrion-associated membranes of human cells. J Virol 82:2715–2726 [CrossRef]
    [Google Scholar]
  5. Colberg-Poley A. M., Patel M. B., Erezo D. P., Slater J. E. 2000; Human cytomegalovirus UL37 immediate-early regulatory proteins traffic through the secretory apparatus and to mitochondria. J Gen Virol 81:1779–1789
    [Google Scholar]
  6. Emanuelsson O., Nielsen H., Brunak S., von Heijne G. 2000; Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016 [CrossRef]
    [Google Scholar]
  7. Falk C. S., Mach M., Schendel D. J., Weiss E. H., Hilgert I., Hahn G. 2002; NK cell activity during human cytomegalovirus infection is dominated by US2–11-mediated HLA class I down-regulation. J Immunol 169:3257–3266 [CrossRef]
    [Google Scholar]
  8. Hegde N. R., Tomazin R. A., Wisner T. W., Dunn C., Boname J. M., Lewinsohn D. M., Johnson D. C. 2002; Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation. J Virol 76:10929–10941 [CrossRef]
    [Google Scholar]
  9. Hegde N. R., Chevalier M. S., Wisner T. W., Denton M. C., Shire K., Frappier L., Johnson D. C. 2006; The role of BiP in endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain induced by cytomegalovirus proteins. J Biol Chem 281:20910–20919 [CrossRef]
    [Google Scholar]
  10. Hertel L., Mocarski E. S. 2004; Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of pseudomitosis independent of US28 function. J Virol 78:11988–12011 [CrossRef]
    [Google Scholar]
  11. Hertel L., Lacaille V. G., Strobl H., Mellins E. D., Mocarski E. S. 2003; Susceptibility of immature and mature Langerhans cell-type dendritic cells to infection and immunomodulation by human cytomegalovirus. J Virol 77:7563–7574 [CrossRef]
    [Google Scholar]
  12. Hertel L., Chou S., Mocarski E. S. 2007; Viral and cell cycle-regulated kinases in cytomegalovirus-induced pseudomitosis and replication. PLoS Pathog 3:e6 [CrossRef]
    [Google Scholar]
  13. Hetz C., Glimcher L. 2008; The daily job of night killers: alternative roles of the BCL-2 family in organelle physiology. Trends Cell Biol 18:38–44 [CrossRef]
    [Google Scholar]
  14. Huber M. T., Tomazin R., Wisner T., Boname J., Johnson D. C. 2002; Human cytomegalovirus US7, US8, US9, and US10 are cytoplasmic glycoproteins, not found at cell surfaces, and US9 does not mediate cell-to-cell spread. J Virol 76:5748–5758 [CrossRef]
    [Google Scholar]
  15. Jones D. T. 2007; Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23:538–544 [CrossRef]
    [Google Scholar]
  16. Jones T. R., Muzithras V. P. 1992; A cluster of dispensable genes within the human cytomegalovirus genome short component: IRS1, US1 through US5, and the US6 family. J Virol 66:2541–2546
    [Google Scholar]
  17. Jones T. R., Muzithras V. P., Gluzman Y. 1991; Replacement mutagenesis of the human cytomegalovirus genome: US10 and US11 gene products are nonessential. J Virol 65:5860–5872
    [Google Scholar]
  18. Kanaji S., Iwahashi J., Kida Y., Sakaguchi M., Mihara K. 2000; Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J Cell Biol 151:277–288 [CrossRef]
    [Google Scholar]
  19. Kollert-Jons A., Bogner E., Radsak K. 1991; A 15-kilobase-pair region of the human cytomegalovirus genome which includes US1 through US13 is dispensable for growth in cell culture. J Virol 65:5184–5189
    [Google Scholar]
  20. Kutay U., Hartmann E., Rapoport T. A. 1993; A class of membrane proteins with a C-terminal anchor. Trends Cell Biol 3:72–75 [CrossRef]
    [Google Scholar]
  21. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  22. Lin A., Xu H., Yan W. 2007; Modulation of HLA expression in human cytomegalovirus immune evasion. Cell Mol Immunol 4:91–98
    [Google Scholar]
  23. Maidji E., Tugizov S., Jones T., Zheng Z., Pereira L. 1996; Accessory human cytomegalovirus glycoprotein US9 in the unique short component of the viral genome promotes cell-to-cell transmission of virus in polarized epithelial cells. J Virol 70:8402–8410
    [Google Scholar]
  24. Maidji E., Tugizov S., Abenes G., Jones T., Pereira L. 1998; A novel human cytomegalovirus glycoprotein, gpUS9, which promotes cell-to-cell spread in polarized epithelial cells, colocalizes with the cytoskeletal proteins E-cadherin and F-actin. J Virol 72:5717–5727
    [Google Scholar]
  25. Martoglio B., Dobberstein B. 1998; Signal sequences: more than just greasy peptides. Trends Cell Biol 8:410–415 [CrossRef]
    [Google Scholar]
  26. Mavinakere M. S., Colberg-Poley A. M. 2004; Dual targeting of the human cytomegalovirus UL37 exon 1 protein during permissive infection. J Gen Virol 85:323–329 [CrossRef]
    [Google Scholar]
  27. McCormick A. L. 2008; Control of apoptosis by human cytomegalovirus. Curr Top Microbiol Immunol 325:281–295
    [Google Scholar]
  28. McCormick A. L., Smith V. L., Chow D., Mocarski E. S. 2003; Disruption of mitochondrial networks by the human cytomegalovirus UL37 gene product viral mitochondrion-localized inhibitor of apoptosis. J Virol 77:631–641 [CrossRef]
    [Google Scholar]
  29. McCormick A. L., Meiering C. D., Smith G. B., Mocarski E. S. 2005; Mitochondrial cell death suppressors carried by human and murine cytomegalovirus confer resistance to proteasome inhibitor-induced apoptosis. J Virol 79:12205–12217 [CrossRef]
    [Google Scholar]
  30. Miller A. D., Rosman G. J. 1989; Improved retroviral vectors for gene transfer and expression. Biotechniques 7:980–982, 984–986, 989–990
    [Google Scholar]
  31. Mocarski E. S., Shenk T., Pass R. F. 2007; Cytomegaloviruses. In Fields Virology , 5th edn. pp 2701–2772Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  32. Moorman N. J., Cristea I. M., Terhune S. S., Rout M. P., Chait B. T., Shenk T. 2008; Human cytomegalovirus protein UL38 inhibits host cell stress responses by antagonizing the tuberous sclerosis protein complex. Cell Host Microbe 3:253–262 [CrossRef]
    [Google Scholar]
  33. Nakai K., Horton P. 1999; psort: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36 [CrossRef]
    [Google Scholar]
  34. Pelham H. R. 1990; The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci 15:483–486 [CrossRef]
    [Google Scholar]
  35. Pereira L., Maidji E., Tugizov S., Jones T. 1995; Deletion mutants in human cytomegalovirus glycoprotein US9 are impaired in cell–cell transmission and in altering tight junctions of polarized human retinal pigment epithelial cells. Scand J Infect Dis Suppl 99:82–87
    [Google Scholar]
  36. Rapaport D. 2003; Finding the right organelle. Targeting signals in mitochondrial outer-membrane proteins. EMBO Rep 4:948–952 [CrossRef]
    [Google Scholar]
  37. Reeves M. B., Davies A. A., McSharry B. P., Wilkinson G. W., Sinclair J. H. 2007; Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316:1345–1348 [CrossRef]
    [Google Scholar]
  38. Sinzger C., Hahn G., Digel M., Katona R., Sampaio K. L., Messerle M., Hengel H., Koszinowski U., Brune W., Adler B. 2008; Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89:359–368 [CrossRef]
    [Google Scholar]
  39. Skaletskaya A., Bartle L. M., Chittenden T., McCormick A. L., Mocarski E. S., Goldmacher V. S. 2001; A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proc Natl Acad Sci U S A 98:7829–7834 [CrossRef]
    [Google Scholar]
  40. Tenney D. J., Colberg-Poley A. M. 1991; Human cytomegalovirus UL36–38 and US3 immediate-early genes: temporally regulated expression of nuclear, cytoplasmic, and polysome-associated transcripts during infection. J Virol 65:6724–6734
    [Google Scholar]
  41. Terhune S., Torigoi E., Moorman N., Silva M., Qian Z., Shenk T., Yu D. 2007; Human cytomegalovirus UL38 protein blocks apoptosis. J Virol 81:3109–3123 [CrossRef]
    [Google Scholar]
  42. Thomenius M. J., Distelhorst C. W. 2003; Bcl-2 on the endoplasmic reticulum: protecting the mitochondria from a distance. J Cell Sci 116:4493–4499 [CrossRef]
    [Google Scholar]
  43. Weston K. 1988; An enhancer element in the short unique region of human cytomegalovirus regulates the production of a group of abundant immediate early transcripts. Virology 162:406–416 [CrossRef]
    [Google Scholar]
  44. Weston K., Barrell B. G. 1986; Sequence of the short unique region, short repeats, and part of the long repeats of human cytomegalovirus. J Mol Biol 192:177–208 [CrossRef]
    [Google Scholar]
  45. Yamanishi K., Rapp F. 1979; Induction of host DNA synthesis and DNA polymerase by DNA-negative temperature-sensitive mutants of human cytomegalovirus. Virology 94:237–241 [CrossRef]
    [Google Scholar]
  46. Young J. C., Hoogenraad N. J., Hartl F. U. 2003; Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008466-0
Loading
/content/journal/jgv/10.1099/vir.0.008466-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error