1887

Abstract

Okra leaf curl disease (OLCD) is a major constraint on okra () production in West Africa. Two monopartite begomoviruses (okra virus-1 and okra virus-2), a betasatellite and a DNA1 satellite are associated with OLCD in Mali. Okra virus-1 is an isolate of okra yellow crinkle virus (OYCrV), okra virus-2 is a recombinant isolate of cotton leaf curl Gezira virus (CLCuGV) and the betasatellite is a variant of cotton leaf curl Gezira betasatellite (CLCuGB). Cloned DNA of OYCrV and CLCuGV were infectious and induced leaf curl symptoms in plants, but did not induce OLCD in okra. However, when these clones were individually co-inoculated with the cloned CLCuGB DNA, symptom severity and viral DNA levels were increased in plants and typical OLCD symptoms were induced in okra. The CLCuGB was also replicated by, and increased symptom severity of, three monopartite tomato-infecting begomoviruses, including two from West Africa. The sequence of the DNA1 satellite was highly divergent, indicating that it represents a distinct West African lineage. DNA1 replicated autonomously, and replication required the DNA1-encoded Rep protein. Although DNA1 reduced helper begomovirus DNA levels, symptoms were not attenuated. In the presence of CLCuGB, DNA levels of the helper begomoviruses and DNA1 were substantially increased. Together, these findings establish that OLCD in Mali is caused by a complex of monopartite begomoviruses and a promiscuous betasatellite with an associated parasitic DNA1 satellite. These findings are discussed in terms of the aetiology of OLCD and the evolution of new begomovirus/satellite DNA complexes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008102-0
2009-04-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/4/1001.html?itemId=/content/journal/jgv/10.1099/vir.0.008102-0&mimeType=html&fmt=ahah

References

  1. Argüello-Astorga, G. R. & Ruiz-Medrano, R. ( 2001; ). An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Arch Virol 146, 1465–1485.[CrossRef]
    [Google Scholar]
  2. Bigarre, L., Chazly, M., Salah, M., Ibrahim, M., Padidam, M., Nicole, M., Peterschmitt, M., Fauquet, C. & Thouvenel, J. C. ( 2001; ). Characterization of a new begomovirus from Egypt infecting hollyhock (Althea rosea). Eur J Plant Pathol 107, 701–711.[CrossRef]
    [Google Scholar]
  3. Briddon, R. W. & Markham, P. G. ( 1994; ). Universal primers for the PCR amplification of dicot-infecting geminiviruses. Mol Biotechnol 1, 202–205.[CrossRef]
    [Google Scholar]
  4. Briddon, R. W. & Stanley, J. ( 2006; ). Subviral agents associated with plant single-stranded DNA viruses. Virology 344, 198–210.[CrossRef]
    [Google Scholar]
  5. Briddon, R. W., Bull, S. E., Mansoor, S., Amin, I. & Markham, P. G. ( 2002; ). Universal primers for the PCR-mediated amplification of DNAβ. Mol Biotechnol 20, 315–318.[CrossRef]
    [Google Scholar]
  6. Briddon, R. W., Bull, S. E., Amin, I., Mansoor, S., Bedford, I. D., Rishi, N., Siwatch, S. S., Zafar, Y., Abedel-Salam, A. M. & Markham, P. G. ( 2004; ). Diversity of DNA1: a satellite-like molecule associated with monopartite begomovirus–DNAβ complexes. Virology 324, 462–474.[CrossRef]
    [Google Scholar]
  7. Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M., Zhou, X. & Fauquet, C. M. ( 2008; ). Recommendation for the classification and nomenclature of the DNAβ satellites of begomoviruses. Arch Virol 153, 763–781.[CrossRef]
    [Google Scholar]
  8. Bull, S. E., Briddon, R. W. & Markham, P. G. ( 2003; ). Universal primers for the PCR-mediated amplification of DNA1: a satellite-like molecule associated with begomovirus-DNAβ complexes. Mol Biotechnol 23, 83–86.[CrossRef]
    [Google Scholar]
  9. Chen, H., Nelson, R. S. & Sherwood, J. L. ( 1994; ). Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze–thaw transformation and drug selection. Biotechniques 16, 664–670.
    [Google Scholar]
  10. Cui, X., Li, G., Wang, D., Hu, D. & Zhou, X. ( 2005; ). A begomovirus DNAβ-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79, 10764–10775.[CrossRef]
    [Google Scholar]
  11. De La Torre-Almaraz, R., Monsalvo-Reyes, A., Romero-Rodriguez, A., Argüello-Astorga, G. R. & Ambriz-Granados, S. ( 2006; ). A new begomovirus inducing yellow mottle in okra crops in Mexico is related to Sida yellow vein virus. Plant Dis 90, 378
    [Google Scholar]
  12. Fauquet, C. M., Sawyer, S., Idris, A. M. & Brown, J. K. ( 2005; ). Sequence analysis and classification of apparent recombinant begomoviruses infecting tomato in the Nile and Mediterranean basins. Phytopathology 95, 549–555.[CrossRef]
    [Google Scholar]
  13. Fauquet, C. M., Briddon, R. W., Brown, J. K., Moriones, E., Stanley, J., Zerbini, M. & Zhou, X. ( 2008; ). Geminivirus strain demarcation and nomenclature. Arch Virol 153, 783–821.[CrossRef]
    [Google Scholar]
  14. Gilbertson, R. L., Faria, J. C., Hanson, S. F., Morales, F. J., Ahlquist, P. G., Maxwell, D. P. & Russell, D. R. ( 1991; ). Cloning of the complete DNA genomes of four bean-infecting geminiviruses and determining their infectivity by electric discharge particle acceleration. Phytopathology 81, 980–985.[CrossRef]
    [Google Scholar]
  15. Hagen, C., Rojas, M. R., Sudarshana, M. R., Xoconostle-Cazares, B., Natwick, E. T., Turini, T. A. & Gilbertson, R. L. ( 2008; ). Biology and molecular characterization of Cucurbit leaf crumple virus, an emergent cucurbit-infecting begomovirus in the Imperial Valley of California. Plant Dis 92, 781–793.[CrossRef]
    [Google Scholar]
  16. Hajdukiewicz, P., Svab, Z. & Maliga, P. ( 1994; ). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25, 989–994.[CrossRef]
    [Google Scholar]
  17. Hou, Y.-M. & Gilbertson, R. L. ( 1996; ). Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J Virol 70, 5430–5436.
    [Google Scholar]
  18. Idris, A. M. & Brown, J. K. ( 2002; ). Molecular analysis of Cotton leaf curl virus-Sudan reveals an evolutionary history of recombination. Virus Genes 24, 249–256.[CrossRef]
    [Google Scholar]
  19. Idris, A. M. & Brown, J. K. ( 2005; ). Evidence for interspecific-recombination for three monopartite begomoviral genomes associated with the tomato leaf curl disease from central Sudan. Arch Virol 150, 1003–1012.[CrossRef]
    [Google Scholar]
  20. Idris, A. M., Briddon, R. W., Bull, S. E. & Brown, J. K. ( 2005; ). Cotton leaf curl Gezira virus-satellite DNAs represent a divergent, geographically isolated Nile Basin lineage: predictive identification of a satDNA REP-binding motif. Virus Res 109, 19–32.[CrossRef]
    [Google Scholar]
  21. Jose, J. & Usha, R. ( 2003; ). Bhendi yellow vein mosaic disease in India is caused by association of a DNAβ satellite with a begomovirus. Virology 305, 310–317.[CrossRef]
    [Google Scholar]
  22. Kon, T., Dolores, L. M., Murayama, A., Bajet, N. B., Hase, S., Takahashi, H. & Ikegami, M. ( 2002; ). Genome organization of an infectious clone of Tomato leaf curl virus (Philippines), a new monopartite Begomovirus. J Phytopathol 150, 587–591.[CrossRef]
    [Google Scholar]
  23. Kon, T., Dolores, L. M., Bajet, N. B., Hase, S., Takahashi, H. & Ikegami, M. ( 2003; ). Molecular characterization of a strain of Squash leaf curl China virus from the Philippines. J Phytopathol 151, 535–539.[CrossRef]
    [Google Scholar]
  24. Kon, T., Sharma, P. & Ikegami, M. ( 2007; ). Suppressor of RNA silencing encoded by the monopartite tomato leaf curl Java begomovirus. Arch Virol 152, 1273–1282.[CrossRef]
    [Google Scholar]
  25. Lefeuvre, P., Martin, D. P., Hoareau, M., Naze, F., Delatte, H., Thierry, M., Varsani, A., Becker, N., Reynaud, B. & Lett, J. M. ( 2007; ). Begomovirus “melting pot” in the South West Indian Ocean Islands: molecular diversity and evolution through recombination. J Gen Virol 88, 3458–3468.[CrossRef]
    [Google Scholar]
  26. Lin, B., Akbar Behjatnia, S. A., Dry, I. B., Randles, J. W. & Rezaian, M. A. ( 2003; ). High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology 305, 353–363.[CrossRef]
    [Google Scholar]
  27. Mansoor, S., Khan, S. H., Bashir, A., Saeed, M., Zafar, Y., Malik, K. A., Briddon, R., Stanley, J. & Markham, P. G. ( 1999; ). Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259, 190–199.[CrossRef]
    [Google Scholar]
  28. Mansoor, S., Briddon, R. W., Bull, S. E., Bedford, I. D., Bashir, A., Hussain, M., Saeed, M., Zafar, Y., Malik, K. A. & other authors ( 2003; ). Cotton leaf curl disease is associated with multiple monopartite begomoviruses supported by single DNAβ. Arch Virol 148, 1969–1986.[CrossRef]
    [Google Scholar]
  29. Mansoor, S., Zafar, Y. & Briddon, R. W. ( 2006; ). Geminivirus disease complexes: the threat is spreading. Trends Plant Sci 11, 209–212.[CrossRef]
    [Google Scholar]
  30. Rojas, M. R., Gilbertson, R. L., Russell, D. R. & Maxwell, D. P. ( 1993; ). Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis 77, 340–347.[CrossRef]
    [Google Scholar]
  31. Rojas, M. R., Hagen, C., Lucas, W. J. & Gilbertson, R. L. ( 2005; ). Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43, 361–394.[CrossRef]
    [Google Scholar]
  32. Saeed, M. ( 2008; ). Limitations observed in the use of agroinoculation for geminivirus research. Virus Genes 37, 434–435.[CrossRef]
    [Google Scholar]
  33. Saeed, M., Zafar, Y., Randles, J. W. & Rezaian, M. A. ( 2007; ). A monopartite begomovirus-associated DNAβ satellite substitutes for the DNA B of a bipartite begomovirus to permit systemic infection. J Gen Virol 88, 2881–2889.[CrossRef]
    [Google Scholar]
  34. Salati, R., Nahkla, M. K., Rojas, M. R., Guzman, P., Jaquez, J., Maxwell, D. P. & Gilbertson, R. L. ( 2002; ). Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytopathology 92, 487–496.[CrossRef]
    [Google Scholar]
  35. Saunders, K. & Stanley, J. ( 1999; ). A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264, 142–152.[CrossRef]
    [Google Scholar]
  36. Saunders, K., Bedford, I. D., Briddon, R. W., Markham, P. G., Wong, S. M. & Stanley, J. ( 2000; ). A novel virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci U S A 97, 6890–6895.[CrossRef]
    [Google Scholar]
  37. Saunders, K., Bedford, I. D. & Stanley, J. ( 2002; ). Adaptation from whitefly to leafhopper transmission of an autonomously replicating nanovirus-like DNA component associated with ageratum yellow vein disease. J Gen Virol 83, 907–913.
    [Google Scholar]
  38. Seal, S. E., Jeger, M. J. & Van den Bosch, F. ( 2006; ). Begomovirus evolution and disease management. Adv Virus Res 67, 297–316.
    [Google Scholar]
  39. Seo, Y.-S., Zhou, Y.-C., Turini, T. A., Cook, C. G., Gilbertson, R. L. & Natwick, E. T. ( 2006; ). Evaluation of cotton germ plasm for resistance to the whitefly and cotton leaf crumple (CLCr) disease and etiology of CLCr in California's Imperial Valley. Plant Dis 90, 877–884.[CrossRef]
    [Google Scholar]
  40. Shih, S. L., Green, S. K., Tsai, W. S., Lee, L. M. & Levasseur, V. ( 2006; ). First report of a distinct begomovirus associated with okra yellow crinkle disease in Mali. Plant Pathol 56, 718
    [Google Scholar]
  41. Varma, A. & Malathi, V. G. ( 2003; ). Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142, 145–164.[CrossRef]
    [Google Scholar]
  42. Zhou, X., Liu, Y., Robinson, D. J. & Harrison, B. D. ( 1998; ). Four DNA-A variants among Pakistani isolates of cotton leaf curl virus and their affinities to DNA-A of geminivirus isolates from okra. J Gen Virol 79, 915–923.
    [Google Scholar]
  43. Zhou, Y.-C., Noussourou, M., Kon, T., Rojas, M. R., Jiang, H., Chen, L.-F., Gamby, K., Foster, R. & Gilbertson, R. L. ( 2008; ). Evidence of local evolution of tomato-infecting begomovirus species in West Africa: characterization of tomato leaf curl Mali virus and tomato yellow leaf crumple virus from Mali. Arch Virol 153, 693–706.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008102-0
Loading
/content/journal/jgv/10.1099/vir.0.008102-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error