1887

Abstract

Full-length human immunodeficiency virus type 1 (HIV-1) RNA acts as both mRNA, encoding Gag and Gag–Pol polyproteins, and genomic RNA. Translation of this RNA must be tightly controlled to allow sufficient protein synthesis prior to a switch to particle production. The viral protein Rev stimulates nuclear export of unspliced HIV-1 RNAs containing the Rev response element, but may also stimulate translation of these RNAs. We previously identified an additional Rev binding site in the 5′ untranslated region of the HIV-1 RNA. We show that Rev inhibits translation non-specifically at high concentrations and stimulates translation of HIV-1 RNAs at intermediate concentrations . Stimulation is dependent on the presence of the Rev binding site within the 5′ untranslated region and not on the Rev response element. In COS-1 cells, translation from an HIV-1 reporter is specifically increased by coexpression of Rev.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.007963-0
2009-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/5/1141.html?itemId=/content/journal/jgv/10.1099/vir.0.007963-0&mimeType=html&fmt=ahah

References

  1. Anderson E. C., Lever A. M. L. 2006; Human immunodeficiency virus type 1 Gag polyprotein modulates its own translation. J Virol 80:10478–10486 [CrossRef]
    [Google Scholar]
  2. Campbell L. H., Borg K. T., Haines J. K., Moon R. T., Schoenberg D. R., Arrigo S. J. 1994; Human immunodeficiency virus type 1 Rev is required in vivo for binding of poly(A)-binding protein to Rev-dependent RNAs. J Virol 68:5433–5438
    [Google Scholar]
  3. Chaloin L., Smagulova F., Hariton-Gazal E., Briant L., Loyter A., Devaux C. 2007; Potent inhibition of HIV-1 replication by backbone cyclic peptides bearing the Rev arginine rich motif. J Biomed Sci 14:565–584 [CrossRef]
    [Google Scholar]
  4. Chang D. D., Sharp P. A. 1989; Regulation by HIV Rev depends upon recognition of splice sites. Cell 59:789–795 [CrossRef]
    [Google Scholar]
  5. D'Agostino D. M., Felber B. K., Harrison J. E., Pavlakis G. N. 1992; The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag / pol and vpu / env mRNAs. Mol Cell Biol 12:1375–1386
    [Google Scholar]
  6. Daly T. J., Cook K. S., Gray G. S., Maione T. E., Rusche J. R. 1989; Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro . Nature 342:816–819 [CrossRef]
    [Google Scholar]
  7. Dangerfield J. A., Hohenadl C., Egerbacher M., Kodajova P., Salmons B., Gunzburg W. H. 2005; HIV-1 Rev can specifically interact with MMTV RNA and upregulate gene expression. Gene 358:17–30 [CrossRef]
    [Google Scholar]
  8. Emerman M., Vazeux R., Peden K. 1989; The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell 57:1155–1165 [CrossRef]
    [Google Scholar]
  9. Feinberg M. B., Jarrett R. F., Aldovini A., Gallo R. C., Wong-Staal F. 1986; HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 46:807–817 [CrossRef]
    [Google Scholar]
  10. Felber B. K., Hadzopoulou-Cladaras M., Cladaras C., Copeland T., Pavlakis G. N. 1989; Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci U S A 86:1495–1499 [CrossRef]
    [Google Scholar]
  11. Gallego J., Greatorex J., Zhang H., Yang B., Arunachalam S., Fang J., Seamons J., Lea S., Pomerantz R. J., Lever A. M. 2003; Rev binds specifically to a purine loop in the SL1 region of the HIV-1 leader RNA. J Biol Chem 278:40385–40391 [CrossRef]
    [Google Scholar]
  12. Greatorex J., Gallego J., Varani G., Lever A. 2002; Structure and stability of wild-type and mutant RNA internal loops from the SL-1 domain of the HIV-1 packaging signal. J Mol Biol 322:543–557 [CrossRef]
    [Google Scholar]
  13. Greatorex J. S., Palmer E. A., Pomerantz R. J., Dangerfield J. A., Lever A. M. L. 2006; Mutation of the Rev-binding loop in the human immunodeficiency virus 1 leader causes a replication defect characterized by altered RNA trafficking and packaging. J Gen Virol 87:3039–3044 [CrossRef]
    [Google Scholar]
  14. Hadzopoulou-Cladaras M., Felber B. K., Cladaras C., Athanassopoulos A., Tse A., Pavlakis G. N. 1989; The rev ( trs / art ) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis -acting sequence in the env region. J Virol 63:1265–1274
    [Google Scholar]
  15. Harrison G. P., Lever A. M. 1992; The human immunodeficiency virus type 1 packaging signal and major splice donor region have a conserved stable secondary structure. J Virol 66:4144–4153
    [Google Scholar]
  16. Harrison G. P., Miele G., Hunter E., Lever A. M. 1998; Functional analysis of the core human immunodeficiency virus type 1 packaging signal in a permissive cell line. J Virol 72:5886–5896
    [Google Scholar]
  17. Heaphy S., Dingwall C., Ernberg I., Gait M. J., Green S. M., Karn J., Lowe A. D., Singh M., Skinner M. A. 1990; HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem–loop structure located within the Rev response element region. Cell 60:685–693 [CrossRef]
    [Google Scholar]
  18. Herbreteau C. H., Weill L., Décimo D., Prévôt D., Darlix J. L., Sargueil B., Ohlmann T. 2005; HIV-2 genomic RNA contains a novel type of IRES located downstream of its initiation codon. Nat Struct Mol Biol 12:1001–1007 [CrossRef]
    [Google Scholar]
  19. Holland S. M., Ahmad N., Maitra R. K., Wingfield P., Venkatesan S. 1990; Human immunodeficiency virus Rev protein recognizes a target sequence in Rev-responsive element RNA within the context of RNA secondary structure. J Virol 64:5966–5975
    [Google Scholar]
  20. Jin Y., Cowan J. A. 2006; Targeted cleavage of HIV rev response element RNA by metallopeptide complexes. J Am Chem Soc 128:410–411 [CrossRef]
    [Google Scholar]
  21. Kimura T., Hashimoto I., Nishikawa M., Fujisawa J. 1996; A role for Rev in the association of HIV-1 gag mRNA with cytoskeletal β -actin and viral protein expression. Biochimie 78:1075–1080 [CrossRef]
    [Google Scholar]
  22. Lawrence J. B., Cochrane A. W., Johnson C. V., Perkins A., Rosen C. A. 1991; The HIV-1 Rev protein: a model system for coupled RNA transport and translation. New Biol 3:1220–1232
    [Google Scholar]
  23. Legrain P., Rosbash M. 1989; Some cis - and trans -acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 57:573–583 [CrossRef]
    [Google Scholar]
  24. Malim M. H., Cullen B. R. 1993; Rev and the fate of pre-mRNA in the nucleus: implications for the regulation of RNA processing in eukaryotes. Mol Cell Biol 13:6180–6189
    [Google Scholar]
  25. Mann D. A., Mikaélian I., Zemmel R. W., Green S. M., Lowe A. D., Kimura T., Singh M., Butler P. J., Gait M. J., Karn J. 1994; A molecular rheostat: co-operative rev binding to stem I of the rev-response element modulates human immunodeficiency virus type-1 late gene expression. J Mol Biol 241:193–207 [CrossRef]
    [Google Scholar]
  26. Mills N. L., Daugherty M. D., Frankel A. D., Guy R. K. 2006; An α -helical peptidomimetic inhibitor of the HIV-1 Rev–RRE interaction. J Am Chem Soc 128:3496–3497 [CrossRef]
    [Google Scholar]
  27. Moehle K., Athanassiou Z., Patora K., Davidson A., Varani G., Robinson J. A. 2007; Design of β -hairpin peptidomimetics that inhibit binding of α -helical HIV-1 Rev protein to the Rev response element RNA. Angew Chem Int Ed Engl 46:9101–9104 [CrossRef]
    [Google Scholar]
  28. Nakielny S., Fischer U., Michael W. M., Dreyfuss G. 1997; RNA transport. Annu Rev Neurosci 20:269–301 [CrossRef]
    [Google Scholar]
  29. Perales C., Carrasco L., González M. E. 2005; Regulation of HIV-1 env mRNA translation by Rev protein. Biochim Biophys Acta 1743169–175 [CrossRef]
    [Google Scholar]
  30. Purcell D. F., Martin M. A. 1993; Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 67:6365–6378
    [Google Scholar]
  31. Ricci E. P., Soto Rifo R., Herbreteau C. H., Décimo D., Ohlmann T. 2008; Lentiviral RNAs can use different mechanisms for translation initiation. Biochem Soc Trans 36:690–693 [CrossRef]
    [Google Scholar]
  32. Ruhl M., Himmelspach M., Bahr G. M., Hammerschmid F., Jaksche H., Wolff B., Aschauer H., Farrington G. K., Probst H. other authors 1993; Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans -activation. J Cell Biol 123:1309–1320 [CrossRef]
    [Google Scholar]
  33. Schwartz S., Felber B. K., Benko D. M., Fenyo E. M., Pavlakis G. N. 1990; Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol 64:2519–2529
    [Google Scholar]
  34. Schwartz S., Campbell M., Nasioulas G., Harrison J., Felber B. K., Pavlakis G. N. 1992; Mutational inactivation of an inhibitory sequence in human immunodeficiency virus type 1 results in Rev-independent gag expression. J Virol 66:7176–7182
    [Google Scholar]
  35. Sodroski J., Goh W. C., Rosen C. A., Dayton A., Terwilliger E., Haseltine W. 1986; A second post-transcriptional trans -activator gene required for HTLV-III replication. Nature 321:412–417 [CrossRef]
    [Google Scholar]
  36. Ye Y., Li B. 2006; 1′S-1′-acetoxychavicol acetate isolated from Alpinia galanga inhibits human immunodeficiency virus type 1 replication by blocking Rev transport. J Gen Virol 87:2047–2053 [CrossRef]
    [Google Scholar]
  37. Zhang G., Zapp M. L., Yan G., Green M. R. 1996; Localization of HIV-1 RNA in mammalian nuclei. J Cell Biol 135:9–18 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.007963-0
Loading
/content/journal/jgv/10.1099/vir.0.007963-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error