The Epstein–Barr virus lytic cycle activator Zta interacts with methylated ZRE in the promoter of host target gene Free

Abstract

Activation of the host gene is essential for the lytic replication of Epstein–Barr virus (EBV). is activated by Zta (BZLF1, ZEBRA). Zta interacts directly with DNA through a series of closely related Zta-response elements (ZREs). Here we dissect the mechanism used by Zta to interact with the promoter and identify a weak interaction with ZRE that is dependent on the distal part of ZRE. Furthermore, we demonstrate that the ability of Zta to interact with ZRE is enhanced at least tenfold by methylation. The ability of Zta to transactivate a reporter construct driven by the promoter can be enhanced by methylation. As the ability of Zta to interact with a methylated ZRE in the EBV genome correlates with its ability to activate the expression of the endogenous viral gene , this suggests that Zta may also have the capability to overturn epigenetic control of .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.007922-0
2009-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/6/1450.html?itemId=/content/journal/jgv/10.1099/vir.0.007922-0&mimeType=html&fmt=ahah

References

  1. Bhende P. M., Seaman W. T., Delecluse H. J., Kenney S. C. 2004; The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36:1099–1104 [CrossRef]
    [Google Scholar]
  2. Bhende P. M., Seaman W. T., Delecluse H. J., Kenney S. C. 2005; BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186. J Virol 79:7338–7348 [CrossRef]
    [Google Scholar]
  3. Chaganti S., Ma C. S., Bell A. I., Croom-Carter D., Hislop A. D., Tangye S. G., Rickinson A. B. 2008; Epstein–Barr virus persistence in the absence of conventional memory B cells: IgM+IgD+CD27+ B cells harbor the virus in X-linked lymphoproliferative disease patients. Blood 112:672–679 [CrossRef]
    [Google Scholar]
  4. Chang Y., Lee H. H., Chen Y. T., Lu J., Wu S. Y., Chen C. W., Takada K., Tsai C. H. 2006; Induction of the early growth response 1 gene by Epstein–Barr virus lytic transactivator Zta. J Virol 80:7748–7755 [CrossRef]
    [Google Scholar]
  5. Conacher M., Callard R., McAulay K., Chapel H., Webster D., Kumararatne D., Chandra A., Spickett G., Hopwood P. A., Crawford D. H. 2005; Epstein-Barr virus can establish infection in the absence of a classical memory B-cell population. J Virol 79:11128–11134 [CrossRef]
    [Google Scholar]
  6. Falzon M., Kuff E. L. 1991; Binding of the transcription factor EBP-80 mediates the methylation response of an intracisternal A-particle long terminal repeat promoter. Mol Cell Biol 11:117–125
    [Google Scholar]
  7. Feederle R., Kost M., Baumann M., Janz A., Drouet E., Hammerschmidt W., Delecluse H. J. 2000; The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19:3080–3089 [CrossRef]
    [Google Scholar]
  8. Gutsch D. E., Holley-Guthrie E. A., Zhang Q., Stein B., Blanar M. A., Baldwin A. S., Kenney S. C. 1994; The bZIP transactivator of Epstein-Barr virus, BZLF1, functionally and physically interacts with the p65 subunit of NF- κ B. Mol Cell Biol 14:1939–1948
    [Google Scholar]
  9. Heston L., El-Guindy A., Countryman J., Dela Cruz C., Delecluse H. J., Miller G. 2006; Amino acids in the basic domain of Epstein-Barr virus ZEBRA protein play distinct roles in DNA binding, activation of early lytic gene expression, and promotion of viral DNA replication. J Virol 80:9115–9133 [CrossRef]
    [Google Scholar]
  10. Hicks M. R., Al-Mehairi S. S., Sinclair A. J. 2003; The zipper region of Epstein-Barr virus bZIP transcription factor Zta is necessary but not sufficient to direct DNA binding. J Virol 77:8173–8177 [CrossRef]
    [Google Scholar]
  11. Holler M., Westin G., Jiricny J., Schaffner W. 1988; Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev 2:1127–1135 [CrossRef]
    [Google Scholar]
  12. Iguchi-Ariga S. M., Schaffner W. 1989; CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 3:612–619 [CrossRef]
    [Google Scholar]
  13. Karlsson Q. H., Schelcher C., Verrall E., Petosa C., Sinclair A. J. 2008a; Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and serine residues in the Epstein-Barr virus lytic switch protein. PLoS Pathog 4:e1000005 [CrossRef]
    [Google Scholar]
  14. Karlsson Q. H., Schelcher C., Verrall E., Petosa C., Sinclair A. J. 2008b; The reversal of epigenetic silencing of the EBV genome is regulated by viral bZIP protein. Biochem Soc Trans 36:637–639 [CrossRef]
    [Google Scholar]
  15. Kouzarides T., Packham G., Cook A., Farrell P. J. 1991; The BZLF1 protein of EBV has a coiled coil dimerization domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene 6:195–204
    [Google Scholar]
  16. Mancini D. N., Rodenhiser D. I., Ainsworth P. J., O'Malley F. P., Singh S. M., Xing W., Archer T. K. 1998; CpG methylation within the 5′ regulatory region of the BRCA1 gene is tumor specific and includes a putative CREB binding site. Oncogene 16:1161–1169 [CrossRef]
    [Google Scholar]
  17. Miller G. 1989; The switch between EBV latency and replication. Yale J Biol Med 62:205–213
    [Google Scholar]
  18. Miller G., El-Guindy A., Countryman J., Ye J., Gradoville L. 2007; Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res 97:81–109
    [Google Scholar]
  19. Petosa C., Morand P., Baudin F., Moulin M., Artero J. B., Muller C. W. 2006; Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein. Mol Cell 21:565–572 [CrossRef]
    [Google Scholar]
  20. Schelcher C., Valencia S., Delecluse H. J., Hicks M., Sinclair A. J. 2005; Mutation of a single amino acid residue in the basic region of the Epstein-Barr virus (EBV) lytic cycle switch protein Zta (BZLF1) prevents reactivation of EBV from latency. J Virol 79:13822–13828 [CrossRef]
    [Google Scholar]
  21. Schelcher C., Al Mehairi S., Verrall E., Hope Q., Flower K., Bromley B., Woolfson D. N., West M. J., Sinclair A. J. 2007; Atypical bZIP domain of viral transcription factor contributes to stability of dimer formation and transcriptional function. J Virol 81:7149–7155 [CrossRef]
    [Google Scholar]
  22. Seyfert V. L., McMahon S., Glenn W., Cao X. M., Sukhatme V. P., Monroe J. G. 1990; Egr-1 expression in surface Ig-mediated B cell activation. Kinetics and association with protein kinase C activation. J Immunol 145:3647–3653
    [Google Scholar]
  23. Sinclair A. J. 2003; bZIP proteins of human gammaherpesviruses. J Gen Virol 84:1941–1949 [CrossRef]
    [Google Scholar]
  24. Sinclair A. J. 2006; Unexpected structure of Epstein-Barr virus lytic cycle activator Zta. Trends Microbiol 14:289–291 [CrossRef]
    [Google Scholar]
  25. Sinclair A. J., Farrell P. J. 1992; Epstein-Barr virus transcription factors. Cell Growth Differ 3:557–563
    [Google Scholar]
  26. Sista N. D., Pagano J. S., Liao W., Kenney S. 1993; Retinoic acid is a negative regulator of the Epstein-Barr virus protein (BZLF1) that mediates disruption of latent infection. Proc Natl Acad Sci U S A 90:3894–3898 [CrossRef]
    [Google Scholar]
  27. Sista N. D., Barry C., Sampson K., Pagano J. 1995; Physical and functional interaction of the Epstein-Barr virus BZLF1 transactivator with the retinoic acid receptors RAR α and RXR α . Nucleic Acids Res 23:1729–1736 [CrossRef]
    [Google Scholar]
  28. Speck S. H., Chatila T., Flemington E. 1997; Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 5:399–405 [CrossRef]
    [Google Scholar]
  29. Sukhatme V. P., Cao X. M., Chang L. C., Tsai-Morris C. H., Stamenkovich D., Ferreira P. C., Cohen D. R., Edwards S. A., Shows T. B. other authors 1988; A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53:37–43 [CrossRef]
    [Google Scholar]
  30. Swenson J. J., Holley-Guthrie E., Kenney S. C. 2001; Epstein-Barr virus immediate-early protein BRLF1 interacts with CBP, promoting enhanced BRLF1 transactivation. J Virol 75:6228–6234 [CrossRef]
    [Google Scholar]
  31. Thorley-Lawson D. A., Miyashita E. M., Khan G. 1996; Epstein-Barr virus and the B-cell: that's all it takes. Trends Microbiol 4:204–208 [CrossRef]
    [Google Scholar]
  32. Tierney R. J., Kirby H. E., Nagra J. K., Desmond J., Bell A. I., Rickinson A. B. 2000; Methylation of transcription factor binding sites in the Epstein-Barr virus latent cycle promoter Wp coincides with promoter down-regulation during virus-induced B-cell transformation. J Virol 74:10468–10479 [CrossRef]
    [Google Scholar]
  33. Wang P., Day L., Dheekollu J., Lieberman P. M. 2005; A redox-sensitive cysteine in Zta is required for Epstein-Barr virus lytic cycle DNA replication. J Virol 79:13298–13309 [CrossRef]
    [Google Scholar]
  34. Wu F. Y., Chen H., Wang S. E., ApRhys C. M., Liao G., Fujimuro M., Farrell C. J., Huang J., Hayward S. D., Hayward G. S. 2003; CCAAT/enhancer binding protein α interacts with ZTA and mediates ZTA-induced p21CIP-1 accumulation and G1 cell cycle arrest during the Epstein-Barr virus lytic cycle. J Virol 77:1481–1500 [CrossRef]
    [Google Scholar]
  35. Zhang Q., Gutsch D., Kenney S. 1994; Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency. Mol Cell Biol 14:1929–1938
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.007922-0
Loading
/content/journal/jgv/10.1099/vir.0.007922-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed